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Abstract

Cryptographic proof systems enable an entity, the prover, to convince another entity, the
verifier, about the validity of a statement. To be useful in practice, cryptographic proof
systems must be expressive, enabling proofs for a large class of statements (such as those
in the complexity class NP). A highly desirable property is succinctness, meaning that the
size of the proof (and the time required to verify it) is much smaller than the size of the
witness for the given statement. Nowadays, succinct cryptographic proof systems find a
broad range of applications both within and beyond cryptography, such as outsourcing
computation, anonymous credentials, signature aggregation, blockchain protocols, and
many others. Generally, they provide a trust generation mechanism based on enabling the
efficient verification of third-party claims.

In this thesis, we study both foundational andpractical aspects of succinct proof systems.
In the first part, we focus on building succinct proof systems from standard assumptions, a
problem for which there exist impossibility results for so-called succinct non-interactive
arguments (SNARGs). To circumvent these impossibilities, we seek to relax the power
of SNARGs in different ways, focusing on three families of proof systems: functional
commitments, batch arguments for NP, and homomorphic signatures. For functional
commitments, we present the first construction of this primitive from falsifiable assumptions
that supports the evaluation of arbitrary arithmetic circuits of unbounded depth. To this
end, we introduce a novel concept called chainable functional commitments, which we
instantiate both from lattice-based and from pairing-based assumptions. Later, we present
a pairing-based construction that improves on our original result by achieving more
compact public parameters. For batch arguments, we present the first algebraic construction
that achieves circuit-succinctness, i.e., where the proof size scales linearly in the size of a
single witness and is independent of the size of the circuit that decides the NP relation. For
homomorphic signatures, we achieve the first homomorphic signature for unbounded-depth
circuits, as well as the first multi-key homomorphic signature scheme that is fully-succinct,
i.e., where the proof size scales sublinearly on the number of messages, the circuit size,
and the number of signing parties.

In the second part of the thesis, we focus on building and implementing efficient proof
systems with practical applications. The main goal is to bridge the gap between general-
purpose and special-purpose proof systems: while the former are universally applicable,
the latter provide better concrete efficiency. To this end, we present a family of sumcheck-
based proof systems for verifiable computation of sequential computations which are
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modularly composable at the information-theoretic level, including a novel proof system for
multi-channel convolutions. Our schemes yield both asymptotic and concrete performance
improvements over the state-of-the-art techniques for verifiable machine learning and
image processing.



Resumen

Los sistemas de pruebas criptográficas permiten que una entidad, llamada probador,
convenza a otra entidad, llamada verificador, de la validez de una afirmación. Para ser útiles
en la práctica, los sistemas de pruebas criptográficas deben ser expresivos, permitiendo
pruebas para una amplia clase de instancias (como aquellas en la clase de complejidad
NP). Una propiedad altamente deseable es la concisión, lo que significa que el tamaño
de la prueba (y el tiempo requerido para verificarla) es mucho menor que el tamaño del
testigo correspondiente a la instancia. Hoy en día, los sistemas de pruebas criptográficas
concisas encuentran innumerables aplicaciones tanto dentro como fuera de la criptografía,
incluyendo la computación delegada, las credenciales anónimas, la agregación de firmas,
los protocolos de blockchain, y muchas otras. En términos generales, ofrecen una forma de
generar confianza, ya que permiten verificar afirmaciones realizadas por terceros de forma
eficiente.

En esta tesis, abordamos cuestiones fundamentales y prácticas en torno a los sistemas
de pruebas concisas. En la primera parte, nos centramos en construir sistemas de prue-
bas concisas a partir de supuestos criptográficos estándar, un problema para el cual existen
resultados de imposibilidad en el caso de los denominados “succinct non-interactive argu-
ments” (SNARGs). Para sortear estas imposibilidades, buscamos relajar la definición de
los SNARGs desde distintos ángulos, centrándonos en tres familias de sistemas de prueba:
los esquemas de compromiso funcionales (“functional commitments”), los argumentos en
tandas para NP (“batch arguments for NP”) y las firmas homomórficas (“homomorphic
signatures”). En cuanto a functional commitments, presentamos la primera construcción de
esta primitiva a partir de supuestos criptográficos refutables que soporta la evaluación
de circuitos arbitrarios de profundidad no acotada. Para ello, introducimos el concepto
de esquema funcional de compromiso encadenable, del cual presentamos construcciones
tanto basadas en retículos (“lattices”) como en emparejamientos (“pairings”). Posterior-
mente, presentamos una construcción que mejora nuestro resultado original consiguiendo
parámetros públicos más concisos. En cuanto a batch arguments, presentamos la primera
construcción algebraica que logra ser concisa en el circuito, es decir, donde el tamaño de
la prueba escala linealmente en el tamaño del testigo de la instancia correspondiente y
no depende del tamaño del circuito que decide la relación NP. En cuanto a homomorphic
signatures, en primer lugar logramos la primera construcción que soporta circuitos de
profundidad no acotada. Además, presentamos el primer esquema multi-clave que es
completamente conciso, es decir, en el que el tamaño de la prueba es sublineal en el número

vii



de firmas, en el tamaño del circuito, y en el número de partes firmantes.
En la segunda parte de la tesis, nos enfocamos en construir e implementar sistemas de

pruebas eficientes con aplicaciones prácticas. El principal objetivo es cerrar la brecha entre
los sistemas de prueba de propósito general y los específicos: mientras que los primeros
son aplicables universalmente, los segundos ofrecen mejor rendimiento para problemas
determinados. Con este fin, presentamos una familia de sistemas de prueba “sumcheck”
(instanciados a partir de sumas sobre polinomios multilineales) para la computación
verificable de operaciones secuenciales. Estos sistemas son modulares y componibles a
bajo nivel, e incluyen un nuevo sistema de prueba específico para convoluciones multi-
canal. Nuestras propuestas mejoran tanto la complejidad asintótica como el rendimiento
concreto de las técnicas actuales para verificar algoritmos de inteligencia artificial y de
procesado de imágenes.
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1

Introduction

1.1 Cryptography as a Formal Science

Throughout the last decades, cryptography has evolved from being the “art” of hiding
information to becoming the formal science that protects the confidentiality, integrity, and
authenticity of data in the digital world. Traditionally, cryptography was based on the
principle of “security by obscurity”, where the security of a system relied on keeping
the algorithms that protect it secret. Fortunately, this is no longer true and the design of
cryptographic algorithms is (generally) subject to public scrutiny. More importantly, the
security that these designs achieve is systematically analysed using a formal methodology
called the provable security paradigm.

In a nutshell, provable security consists of providing formal evidence that the security
of a system relies on the difficulty of solving a well-established mathematical problem.
The main advantage of this paradigm is that cryptographers and cryptanalysts can focus
on trying to break the underlying problem, rather than the cryptographic system itself. As
such, much of the cryptography that we use today is based on the hardness of a handful of
mathematical problems, such as factoring large integers, computing discrete logarithms, or
finding short vectors over lattices. The components of the provable security methodology
are the following.

• Functionality. Towards building a sound cryptographic primitive or protocol, the first
design consideration is correctness: what are the algorithms of the scheme, and what is their
intended behaviour when executed honestly? As an example, consider digital signature
schemes, which enable a signer to attest to the authenticity of a message. Any digital sig-
nature scheme is defined by three algorithms: a key generation algorithm that produces
a pair of signing and verification keys, a signing algorithm for certifying a message, and
a verification algorithm for checking the validity of a signature on a message. Besides,
the definition should capture that if a signature is generated honestly on a message
using a valid signing key, the signature will verify correctly for that message and the
associated verification key.

• Adversarial model. The second consideration is the adversarial model: what are the
capabilities of the adversary we want to protect against? In this thesis, we generally consider

1



1. Introduction

either adversaries with unlimited computational resources (unbounded) or probabilistic
polynomial-time adversaries (PPT), which are the most common adversarial models in
cryptography.

• Security definition. The third consideration is the security definition: what does it mean
for a scheme to be secure? In the case of signature schemes, the most natural idea is that an
(admissible, according to the adversarial model) adversary should not be able to forge a
signature, this is, to craft a signature that validates for a given verification key without
knowing its corresponding signing key. Often, multiple security definitions coexist for
the same primitive, leading to different constructions, trade-offs, and even impossibility
results.

These aspects define the framework in which a cryptographic primitive or protocol is
designed and analysed. As introduced before, the end goal of provable security is to show
that a given construction satisfies the above properties (i.e. it is correct and secure in the
stated adversarial model) by means of a formal proof, for which we additionally require
the following components.

• Construction. This is the description of the actual cryptographic scheme that we
study, whose behaviour needs to be formally specified by means of algorithms and
a pseudocode-like description. For a given signature scheme, we need to describe how
the algorithms for key generation, signing and verification actually work.

• Assumptions. Unless the adversaries we consider are unbounded, security theorems
are generally not unconditional – they rely on the (presumed) hardness of some mathe-
matical problem, which we call a cryptographic assumption. There exist a vast number
of cryptographic assumptions, but they differ on their quality and on the amount of
cryptanalysis that they receive. There are a handful of core, standard assumptions that
the community accepts as being plausibly hard, as they have resisted cryptanalysis for
decades. Examples include the discrete logarithm assumption and the learning with
errors assumption. In this thesis, we will primarily consider public-key (i.e. number-
theoretic) cryptographic assumptions.1

• Security theorems and proofs. Eventually, the outcome of this process is a theorem that
shows a reduction (in a complexity-theoretic sense) from the security of the scheme to
a cryptographic assumption. Such results are usually stated as follows: If assumption
A holds, then construction C is secure according to security definition S in the given
adversarial model. Or, in other words, “If an admissible adversary can break construction C
according to security definition S, then one can also break assumption A”.

It may take years for the community to converge on a security definition that is consid-
ered satisfactory, but for the most common cryptographic primitives, security definitions
are now stable and well understood. On the other hand, assumptions and constructions
often play a “cat-and-mouse” game where novel assumptions are proposed to improve
1 According to Impagliazzo’s five worlds [Imp95], this thesis lives in Cryptomania.
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existing constructions, and the former are cryptanalysed leading to breaks (or redesigns)
of the latter. As novel assumptions are more likely to be broken, constructions whose
security relies on standard assumptions are considered more robust and reliable.

The quest for advanced cryptographic primitives. While the traditional uses of cryptog-
raphy over the internet have been essentially encryption, signatures and key exchange, a
large fraction of the cryptographic community now focuses on the design and analysis
of cryptographic objects with more advanced functionalities. Some prominent examples
include secure multiparty computation [Yao82, GMW87], functional encryption [SW05,
BSW11], fully homomorphic encryption [Gen09], and proof systems [GMR85]. These prim-
itives go beyond the usual confidentiality, authenticity and integrity goals for data at rest
and in transit, achieving almost-magical security guarantees for data under computation.
Let us illustrate this with an example. Consider a scenario where a user Alice authenticates
a large data set <1 , . . . , <= with a signature scheme, producing signatures �1 , . . . , �= . To
verify that <1 , . . . , <= have not been tampered with (integrity) and indeed come from
Alice (authenticity), any user Bob can simply check the signatures using Alice’s public key.
Now, consider that a third entity, called the evaluator, performs a computation on Alice’s
data, denoted as H = 5 (<1 , . . . , <=), and sends H to Bob. How can Bob be convinced that H is
the correct result obtained by running 5 on data signed by Alice? A trivial solution is to send
all data to Bob and let him verify the signatures and recompute 5 , but this is slow and
renders the evaluator’s work useless. Cryptographic proof systems provide a better solution
by enabling the evaluator to generate a short, publicly-verifiable proof � that (a) H is obtained
by actually computing 5 on some data <1 , . . . , <= , and that (b) <1 , . . . , <= were messages
signed by Alice.2 Then, Bob can simply verify the proof � to be convinced of the validity
of these statements efficiently3, even without the knowledge of the signatures and the data
itself.

The complexity of designing proof systems, and in general any advanced cryptographic
primitive, raises research questions at multiple levels. At a foundational level, researchers
aim to show feasibility, impossibility, and separability results under different families of
cryptographic assumptions and adversarial models. For example, it is known that some
families of proof systems cannot be proven secure from standard assumptions [GW11].
These results are of paramount importance as they identify the limitations and require-
ments intrinsic to certain primitives, improving our understanding on how (not) to build
them. For more established primitives and solutions, there is an important effort on break-
ing asymptotic barriers towards better concrete efficiency, as well as to improve the quality
and the analysis of the assumptions that are used. Eventually, a more practical line of work
aims to develop efficient primitives with optimizations, carefully selected parameters, and
2 Looking ahead, this is exactly the setting that motivates homomorphic signature schemes, which we introduce
in the next section.

3 In this introduction, we use the term efficiency to refer to concretely small running times, i.e., efficient
algorithms are those that can actually be run on modern hardware in a reasonable amount of time. This is
in contrast to the use of the term efficient as a synonym of polynomial-time, which is usual in complexity
theory.
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reference implementations. It is worth noting that constructions of advanced primitives
that support general computation are often not efficient enough for practical use. Therefore,
the community also seeks better performing solutions tailored for specific applications.
The entire process is not a straight line, but rather a feedback loop where foundational
results introduce novel techniques for building better primitives, which then need to be
improved and made practical.

Figure 1.1: Positioning of this thesis in the landscape of research directions in cryptographic proof systems.
The inner circle corresponds to computational complexity, which is at the core of any proof system. The
inner ring corresponds to cryptography, including assumptions and models. The outer ring corresponds to
design challenges and efficiency considerations. The outer area corresponds to applications.

Where is this thesis positioned? Throughout the thesis, we address several research
questions on cryptographic proof systems, which we introduce in further technical detail
in the coming section. In Figure 1.1, we position our results in the landscape of research
directions in cryptographic proof systems. Many terms that appear in Figure 1.1 may
not be familiar to the reader at this point, but they will be introduced in the following
sections. In the first part of the thesis, we focus primarily on foundational problems. We
provide positive results on constructing some families of proof systems from standard
cryptographic assumptions for the first time. We also introduce novel techniques that
enable us to break asymptotic barriers towards improving their efficiency. In the second
part, we design and implement proof systems tailored for applications of practical interest.

4



1.2. Cryptographic Proof Systems from Theory to Practice

Our solutions significantly improve existing solutions in terms of modularity and efficiency,
both concretely and asymptotically.

1.2 Cryptographic Proof Systems from Theory to Practice

A proof system enables an entity, the prover, to convince another entity, the verifier, that a
given statement is true. The first proof systems were introduced in the 1980s, but they were
comically inefficient (even if polynomial-time) and could not really be used in practice.
In the last two decades, the field has seen a series of breakthroughs that have led to a
rich landscape of efficient proof systems. Today, they have countless applications both
within and beyond cryptography, including verifiable computation [GGP10], anonymous
credentials [CL01], electronic voting [Cha81], privacy-preserving transactions [BCG+14],
blockchains, and many others.

In this section, we introduce proof systems, their properties, and state several research
questions that motivate the results in this thesis.

1.2.1 Proof Systems, Zero-Knowledge and Succinctness

Historically, the first proof systems were interactive proofs (IPs) [GMR85]. As the name
reflects, in an IP the prover and verifier exchange a series of messages where the verifier
can ask questions (challenges) and the prover must respond accordingly. The goal of the
protocol is to show that a given statement x is true, i.e., that x belongs to a given language
ℒ for which the protocol is designed.4 At the end of the interaction, the verifier accepts or
rejects based on the transcript of the messages exchanged. Such a protocol must satisfy
completeness (a correctness notion) and soundness (a security notion). Completeness means
that an honest prover will succeed in convincing a verifier of the validity of a true statement
x ∈ ℒ. Soundness implies that no malicious prover can convince a verifier that a false
statement x ∉ ℒ is true, except with small probability.

Interaction, however, presents some drawbacks. The interacting parties need to be
online at the same time, and communication can be expensive or slow. Also, the prover
cannot proceed until it receives the verifier’s challenges. Moreover, interactive proofs
cannot be used to convince a third party that was not involved in the interaction, and the
prover needs to repeat the interaction for every verifier. This is in strong contrast to the
traditional notion of a mathematical proof, which can be checked independently once it
is generated. To address these issues, there is a large interest in studying non-interactive
proofs, where the prover generates a single message (the proof) that can be checked by a
verifier offline.

Building a non-interactive proof for a language ℒ in the class NP5 is essentially trivial.

4 The power of IPs is surprising: they enable devices with limited computational power, such as smartphones,
to verify any computation that can be carried out using a polynomial amount of space [Sha90].

5 This complexity class is rich enough to capture many interesting computational problems, including virtually
all mathematical assumptions that are useful in cryptography. For example, a proof system for NP allows
one to prove possession of the secret key associated to a given public key, that two ciphertexts encrypt the
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By definition of the class NP, for any x ∈ ℒ there exists a witness w that allows a verifier to
decide language membership in polynomial time. This is, there exists a polynomial-time
algorithm C such that C(x, w) = 1 if and only if x ∈ ℒ. Hence, the prover can simply send
w to the verifier, which will run C(x, w) and accept or reject accordingly. Naturally, this
approach presents serious limitations. First, the prover may not want to expose the witness
to the verifier, such as if we are proving possession of a secret key. Second, the size of
w or the time required to run C can be very large and sending it to the verifier may not
be practical. For instance, if we are aggregating many signatures (e.g. for compressing
transactions on a blockchain), sending all signatures defeats the purpose of the aggregation.
Therefore, non-interactive proofs must have some additional properties to be advantageous
in practice, the most important ones being zero-knowledge and succinctness.

• Zero-knowledge. A proof system is zero-knowledge [GMR85] if the verifier does not
learn anything about the statement being proven other than its validity. This property is
formalized by means of a polynomial-time algorithm called the simulator, which thanks
to some additional power (such as knowledge of a trapdoor embedded in the proof
system), can generate a valid-looking proof for any (possibly false) statement x without
knowing a witness for it. As simulated proofs are indistinguishable from honest proofs
and can be generated without knowing a witness, it follows that no information from
the witness can be extracted from a valid proof either.

• Succinctness. A proof system is succinct if the size of the proof is small compared
to the size of the witness of the NP relation being proven (or the size of the circuit C ).
Succinctness enables encoding proofs for very large statements, such as for valid inference
of a convolutional neural network or for aggregation of many financial transactions, into
a string of a few hundred or thousand bytes.

Unfortunately, there is strong evidence that building succinct non-interactive proofs
that achieve unconditional soundness is impossible [GH98, GVW02, Wee05], and sim-
ilarly for zero-knowledge proofs where both soundness and zero-knowledge hold un-
conditionally [AH87, GK96, Rot25]. The good news is that we can relax soundness to be
computational, that is, to hold only against polynomial-time adversaries while relying
on the hardness of some computational assumption. We call such proof systems crypto-
graphic proofs or simply arguments. For zero-knowledge, it was shown early on that any
NP language admits a computational zero-knowledge argument, both in the interactive
case [BGG+90] and in the non-interactive case (NIZK) [BFM88]. While it is relatively
straightforward to add the zero-knowledge property to most NIZKs (at least in theory,
albeit at a cost in concrete efficiency), achieving succinctness introduces several surprising
additional challenges.

same value, or that an image has been modified in a legitimate way with respect to the original. Furthermore,
provers for languages in NP can run in polynomial time, but this is not always possible outside of this class.
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1.2.2 Succinct Non-Interactive Arguments

Proof systems that are succinct and non-interactive are called succinct non-interactive
arguments (SNARGs) [Kil92, Mic94]. Essentially, SNARGs enable a prover to convince a
verifier of a statement’s validity with a short proof. For example, a SNARG for NP can
prove the validity of a statement x checkable by a circuit C , i.e., that ∃w : C(x, w) = 1,
with a proof of size poly(�, log|w|), that is, only logarithmic in the size of the NP witness
(or even constant). Most SNARGs work in a preprocessing model, where the verifier (or
any third party) can preprocess the the circuit C before the proof is generated. Then, the
“online” verification time can be as short as the size of the proof, i.e., also poly(�, |x|, log|w|),
or simply poly(�, log|w|) if the statement x is also pre-processed by hard-coding it into the
circuit. Nowadays, there is a vast number of approaches to building SNARGs, which we
survey (non-exhaustively) in Section 2.4.

Security of SNARGs. Most families of SNARGs work in the so-called common reference
string (CRS)model, in which the prover and the verifier have access to a public stringwhich
includes some randomness or correlated information [Dam00].6 The standard security
notion of SNARGs is adaptive soundness, which states that, given an NP language ℒ, no
polynomial-time adversary can produce an accepting proof � for a false statement x ∉ ℒ.
The term adaptive means that the adversary can choose the statement x to be proven after
seeing the CRS, which is the setting that is the closest to real-world settings.

The notion of adaptive soundness is however insufficient in many cases. Consider for
example the NP language of the discrete logarithm relation for a group G of prime order ?,
where a statement x = (6, ℎ) are two nontrivial group elements 6, ℎ ∈ G and the goal is to
prove that 60 = ℎ for some exponent w = 0 ∈ F? . This statement is always true regardless of
what 6, ℎ are, as there is always some witness 0 ∈ F? that satisfies the relation. Hence, any
SNARG for this languagewould be trivially sound— the challenge is to prove the knowledge
of the witness rather than its mere existence. This intuition is formalized by the notion of
knowledge soundness, which states that for every polynomial-time adversary that generates
a valid proof � for some statement x, there exists a polynomial time algorithm called the
extractor which, given access to the code of the adversary, can output a witness w such that
C(x, w) = 1 with very high probability. Proving knowledge soundness is challenging, as
one must explicitly build such an extractor and argue about its success probability.7

We remark that both soundness and knowledge soundness are compatible with the

6 A common template for a CRS is to include correlated group elements. For instance, in a prime order group
setting G, a usual CRS may include elements 6, ℎ1 , ℎ2 , . . . , ℎ= ∈ G such that ℎ8 = 60

8 for some 0 ∈ Z? . Here,
0 is a CRS trapdoor, and its knowledge would enable the prover to cheat. The CRS has to be generated either
by a trusted party or by a distributed protocol ran among multiple parties [BCG+15, NRBB22].

7 Although extractors are generally only used in proofs by reduction, there are examples where the extractor
of a proof system is actually executed as part of a bigger protocol. In our recent work [ABB+24], not
included in this thesis, we explore the usefulness of extractors (and zero-knowledge simulators) of a class
of multi-round proof systems. Their use in constructions enables surprising applications such as trapdoor
commitments [Dam90], proofs of partial knowledge [CDS94, ACF21, ABO+24], or even advanced signature
schemes such as adaptor signatures [Poe17, AEE+21].
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zero-knowledge property as discussed earlier.

Assumptions in SNARGs. According to the definition of extractability that we just
introduced, it may seem surprising that a SNARG can actually achieve such a notion.
Indeed, a SNARG proof is a string of size poly(�, log|w|), and the extractor must be able to
output a witness w of size |w|. So, information-theoretically, it seems impossible to extract
a witness from a proof that is much smaller than the witness itself, as some information
is lost due to the compression. One could try to build an extractor which actually solves
the problem of finding a witness for x, but this is hard in general for NP relations as the
extractor must run in polynomial time.

This intuition was formalized by Gentry and Wichs [GW11], who proved that it is
impossible to construct adaptively-sound SNARGs8 for NPwhose security relies on a black-
box reduction to a large class of cryptographic assumptions that we call falsifiable. Falsifiable
assumptions [Nao03] are assumptions where the winning condition can be checked by
the challenger in polynomial time. Essentially all standard cryptographic assumptions,
including but not limited to DDH, CDH, RSA, SIS, and LWE, are falsifiable.9 On the other
hand, non-falsifiable assumptions are those whose winning condition cannot be checked in
polynomial time. The most prominent examples include the random oracle model [BR93],
idealized group-based models (such as the generic group model [Sho97, Mau05] and the
algebraic group model [FKL18]) and knowledge assumptions.

Let us illustrate these concepts with examples. Consider the computational Diffie-
Hellman (CDH) assumption, which can be stated as follows. Given a group G of prime
order ? and a generator 6 ∈ G, the challenger samples 0, 1 ∈ F? at random and sends two
group elements ℎ1 = 60 and ℎ2 = 61 to the adversary, whose goal is to return the element
601 . Observe that the challenger can easily check whether the adversary’s output is correct
as it knows 0, 1 in the clear and can compute 601 .

On the other hand, consider the knowledge of exponent assumption [Dam92, BP04]
(KEA). Given a group G of prime order ? and a generator 6 ∈ G, the challenger samples
0 ∈ F at random and gives ℎ = 60 to the adversary. The adversary’s goal is to return two
group elements G, H ∈ G such that H = G0 . The assumption says that for any successful
adversary, there exists an extractor that can output a coefficient 1 ∈ F such that G = 61

and H = ℎ1 in polynomial time. Namely, we are assuming that the only way in which any
adversary can obtain such G, H is by computing 61 and ℎ1 for some 1 ∈ F? . Naturally, a
challenger does not have a way to decide whether the adversary crafted G, H in this way or
not, and so the assumption is not falsifiable. To seewhy such assumptionsmay help proving
knowledge soundness of a SNARG, observe that the KEA itself assumes the existence of
an extractor which can look at the adversary’s memory to retrieve the coefficient 1 ∈ F.
Therefore, this “assumption-extractor” can give us the additional information we need to
build a successful SNARG extractor.

8 We remark that their celebrated result applies also to sound SNARGs and not only to knowledge-sound
SNARGs.

9 Falsifiable assumptions are considered part of the “standard model” of cryptography.
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To summarize, Gentry and Wichs’ result shows that, to build fully-fledged SNARGs for
NP, we need to give up on falsifiable assumptions.10 But falsifiable assumptions are objec-
tively of better quality than non-falsifiable ones and strongly preferred by the cryptographic
community. Therefore, given the importance of SNARGs and their many applications in
practice, finding ways to circumvent the impossibility is a strongly motivated and popular
line of research.

1.2.3 Succinct Non-Interactive Proof Systems from Standard Assumptions

In search of stable foundations for SNARGs, various lines of research have explored
alternative methods to construct succinct arguments that rely on falsifiable assumptions.
One notable approach is to relax the full power of SNARGs, while ensuring that they remain
useful in applications. Depending on which property is loosened, we obtain a family of
flavours of proof systems:

• Relaxing the expressiveness of SNARGs and focusing only on deterministic polynomial-
time computations leads to the notion of delegation schemes (also called SNARGs for
P) [KPY19, GZ21, JKKZ21, CJJ22]. These proof systems have a direct application to
verifiable computation where the verifier knows all the inputs of a computation.

• Relaxing the soundness property of SNARGs and focusing on a weaker property called
evaluation binding leads to the notion of functional commitments (FCs) [LRY16].

• Relaxing the succinctness of SNARGs leads to the notion of batch arguments for NP
(BARGs) [KPY19, CJJ21].

• Finally, it is also possible to aim for SNARGs that are tailored to specific applications instead
of general-purpose computations, leading to primitives such as homomorphic signatures
(HS) [JMSW02].

The above relaxations are not necessarily weaknesses but can actually be interesting
features — these proof systems can be an attractive alternative to SNARGs wherever their
respective notions are sufficient, while relying only on standard, well-founded assump-
tions. Besides the notable technical challenge of building efficient instantiations of these
primitives, there are still lots of open questions surrounding them, including finding more
applications where they can effectively replace the use of SNARGs. The first part of this
thesis addresses several open questions on functional commitments, batch arguments for
NP, homomorphic signatures, and the connections between them. As many families of
SNARGs do, these proof systems work in the CRS model. We introduce them in detail
below.
10This is not entirely precise as there are two known approaches to circumventing Gentry-Wichs. One is to use
non-black-box reductions to falsifiable assumptions, which is a very active line of research [WW24a, MPV24,
DWW24, JKLM25]. At a very high level, these works rely on complexity leveraging and subexponential
hardness assumptions to actually build an extractor that computes an NP witness. The other is to build
non-adaptively sound SNARGs, which are SNARGs that sound only for statements that are not adaptively
chosen by the adversary after seeing the CRS [SW14]. Both approaches seem to be highly non-practical at
the time of writing this thesis, as they extensively rely on indistinguishability obfuscation [BGI+01].
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Functional Commitments

Commitment schemes are ubiquitous primitives in cryptography that allow one to compress
a (vector of) message x into a succinct commitment com. Later, one can reveal x by sending
it along with a short opening proof. Commitments must be binding, meaning that it should
be infeasible to open a commitment com to two different x,x′ successfully. Commitments
may also be hiding, meaning that com does not reveal anything about x.

A functional commitment scheme [LRY16] enables opening the commitment com to a
function of the committed message, that is, revealing 5 (x) for some function 5 . Naturally, the
property that makes functional commitments interesting is that not only the commitments
but also the functional opening proofs are succinct, i.e., sublinear in the size of the function
5 .

There are essentially two ways to contextualize this primitive. First, FCs can be seen as
a generalization of commitment schemes that support more expressive openings, in the
line of vector commitments [CFM08, LY10, CF13] and polynomial commitments [KZG10].
Second, FCs can be seen as a class of (commit-and-prove) SNARGs with a weaker security
property than knowledge soundness called evaluation binding. Essentially, evaluation bind-
ing says that no polynomial-time adversary should be able to validly open any commitment
com to two different values H ≠ H′ for the same function 5 . This is a natural generalization
of the standard notion of commitment binding. As mentioned above, evaluation binding
is actually a feature, as it enables instantiations of functional commitments from standard
assumptions. For some applications, such as homomorphic signatures and verifiable
databases, evaluation binding FCs can totally replace SNARGs as shown in [CFT22]. Fur-
thermore, any functional commitment scheme implies a universal delegation scheme or
SNARG for P. An additional motivation to study functional commitments is that they
offer an alternative blueprint to constructing SNARKs, yielding elegant constructions
with modular security proofs. Indeed, any evaluation binding FC can be compiled into a
knowledge-sound SNARK by adding a simple proof of knowledge for the commitment,
i.e., for a statement such as “I know a vector x that opens the commitment”.

Prior to this thesis, there were different constructions of functional commitments that
supported limited classes of functions. Besides the special cases of vector and polynomial
commitments, these included linear maps [LRY16, LM19], semi-sparse polynomials [LP20]
and constant-degree polynomials [ACL+22, CFT22]. However, no construction that could
support arbitrary functions was known, nor did it seem obvious that existing techniques
could lead to such a result. Therefore, themain open question in the fieldwas the following:

Can we build a succinct functional commitment scheme for arbitrary functions?

Batch Arguments for NP

A batch argument for NP allows one to prove membership of a collection of NP state-
ments x1 , . . . , x: , or in other words, that ∀8 = 1, . . . , :, ∃w8 : C(x8 , w8) = 1 for the circuit
C that decides the NP language. As opposed to the usual notion of SNARKs where the
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proof is polylogarithmic on the size of the witness (which in this case would be the entire
vector of witnesses w = (w1 , · · · , w:)), the succinctness notion of BARGs is more relaxed.
Namely, the proof is only required to scale sublinearly in the number of statements, e.g., of size
poly(�, |C|, log :), but not sublinearly in the circuit size, or in the witness size. Due to its
distinctive properties — succinct proofs and realisations from standard falsifiable assump-
tions — BARGs are emerging as a useful tool to realise other cryptographic primitives
from standard assumptions, similarly to functional commitments. Notably, BARGs can
also be used to build delegation schemes [BHK17, KPY19, KVZ21, CJJ22] and to aggregate
signatures [WW22, BCJP24].

In the state of the art, the main approach to construct BARGs involves probabilisti-
cally checkable proofs (PCPs) and correlation intractable (CI) hash functions [CGH98,
CCH+19, PS19, JJ21]. This direction has led to non-black-box constructions from LWE
[CJJ22, DGKV22, PP22] or subexponential DDH [CGJ+23]. Notably, the constructions
of [DGKV22, PP22] achieve a proof size (and verification time for [PP22]) of |�| = |w| +
O(|w|/�)+poly(�, log :), which is sublinear in |C| and,more importantly, it is rate-1, meaning
that the |w| term is not multiplied by any other factor. However, despite their near-optimal
asymptotic efficiency, these constructions have large concrete overheads, i.e. the poly func-
tions in proof size and verification time expressions are large and not explicitly specified.
Hence, these techniques lead to “galactic” proof systems and are unlikely to yield practical
schemes.

An exception to the approach above is the work of Waters and Wu [WW22] who
gave direct algebraic constructions over bilinear pairings based on the decision linear
(:-Lin) assumption. Leveraging the algebraic structure of the assumptions relied on by the
schemes often translates into more concretely efficient, implementable, and relatively sim-
ple constructions. Indeed, the scheme of [WW22] achieves a proof size of |�| = O(� · |C|)
with small concrete constants. The result is later improved by [GLWW24] who reduces
the public parameter size while keeping essentially the same design. However, in both
[WW22, GLWW24] the verifier runs in time Ω(� · |C|), even if offline preprocessing is
allowed. Hence, a natural open question is whether we can build a BARG which achieves
optimal succinctness, i.e., where proofs grow linearly with the size of one witness (but not
necessarily rate-1, i.e., modulo � factors). In summary, we ask the following question:

Can we build an algebraic BARG for NP where the proof size only depends on the size of a single
witness?

Homomorphic Signatures

In parallel to the effort of ensuring privacy for data used during computation, which is
the object of study of, e.g., works on fully homomorphic encryption [Gen09], another
important goal is to provide data authenticity. Recall the example from earlier on, where a
user Alice authenticates a large data set <1 , . . . , <= with a signature scheme, producing
signatures �1 , . . . , �= . Then, an evaluator performs a computation H = 5 (<1 , . . . , <=)
on Alice’s data and sends H to Bob, which has to either trust the evaluator or verify the
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signatures and recompute H on his own. Homomorphic signatures [JMSW02] stand out as
a solution to provide succinct authenticity-preserving proofs of computation. They allow the
evaluator to compute on signed data, deriving not only the output H but also a succinct
signature � 5 ,H that acts both as an authenticator of H and as a proof of computation for
5 . Anyone can publicly verify the tuple ( 5 , H, � 5 ,H) and get convinced of the correctness
of H as the result of computing 5 on Alice’s data, without having to download the large
data input. Homomorphic signatures may incorporate useful additional properties, such
as amortized efficiency (enabling verification in time independent of the complexity of 5 ,
after preprocessing), multi-hop evaluation (supporting evaluation over already evaluated
signatures), and context-hiding (preventing the verifier from learning information on the
inputs beyond the computation’s output).

Prior to this thesis, the state of the art in homomorphic signatures from standard
assumptions included the lattice-based construction of Gorbunov, Vaikuntanathan and
Wichs, which supports the evaluation of arbitrary boolean circuits whose depth has to be
(polynomially) bounded at setup time [GVW15]. Then, Catalano, Fiore and Tucker [CFT22]
showed how to build homomorphic signatures generically from additive-homomorphic
functional commitments, where the HS supports the same class of functions as the func-
tional commitment. An important open question is thus the following:

Can we build homomorphic signature schemes for unbounded-depth circuits, optimally supporting
additional properties such as efficient verification, multi-hop evaluation and context-hiding?

Multi-key Homomorphic Signatures. In many scenarios, however, computations are
performed on data that belongs to (and is authenticated by) multiple entities. Typical
examples include aggregating data collected by several hospitals for clinical studies, smart
monitoring of signals produced by IoTdevices (e.g., medical/environmental/traffic sensors,
wearable devices, etc.), or transactions made by different users in a blockchain. In this
context, the standard notion of homomorphic signatures falls short, since it requires that
all messages are signed under the same key. To address this issue, Fiore, Mitrokotsa,
Nizzardo, and Pagnin introduced multi-key homomorphic signatures (MKHS) [FMNP16]. In
a MHKS, the evaluator computes a function 5 over = messages <1 , . . . , <= , where each <8

is authenticated by someone in a set of C parties that we denote by id1 , . . . , idC . In this case,
the resulting signature � 5 ,H must vouch for the correctness of H as the output of 5 on inputs
that were signed under public signature keys vk1 , . . . , vkC , where each vk8 corresponds to
id8s.

The construction of succinct MKHS involves greater challenges than for their single-
user counterparts. Prior to this thesis, all the MKHS schemes from falsifiable assumptions
[FMNP16, FP18, SBB19, SFVA21] achieved only a weak notion of succinctness in which, for
a function 5 with = inputs signed by C distinct users, the size of � 5 ,H grows as poly(�, C , log =),
i.e., at least linearly in the number of users involved in the computation. Even if this level
of succinctness may be acceptable in applications where a few users provide each a large
amount of data, it is clearly undesirable in scenarios that involve computing on data from
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many parties, such as the case of IoT sensors or users in a blockchain. The state of the art
in MKHS therefore raises the following open question:

Can we build a fully-succinct multi-key homomorphic signature scheme supporting arbitrary
functions?

1.2.4 Practically Efficient Proof Systems for Real-World Applications

Beyond inspiring many foundational questions, SNARGs have a huge potential for solving
real-world problems. While primitives such as BARGs and functional commitments still
have limitations in terms of practical efficiency, some SNARGs based on stronger assump-
tions do achieve practical performance. In the second part of this thesis, we address the
challenge of building SNARGs for real-world applications that involve large inputs, with
an emphasis on proof composability and prover efficiency.

One of the most prominent applications of SNARGs where efficient provers are crucial
is the outsourcing of computation. In this setting, clients outsource the data processing task
to a potentially untrusted server that (i) has enough resources to carry out the computation
and optionally (ii) may hold additional data that is required to complete the task but
that cannot be shared with clients. As an example, consider the scenario where a bank
owns a machine learning model � that decides credit worthiness . = �(-,,), given
some customer data - and model parameters, . A proof system for this scenario should
provide publicly verifiable (hence auditable) proofs with strong guarantees for:

• Integrity. The prediction is indeed generated by the model, given solely the data pro-
vided by the customer and the model parameters. Integrity also guarantees that no bias
or unauthorized data—such as gender or race—were used in the computation. This is
relevant as the bank (or similar stakeholders) must abide to legal directives that forbid
discrimination when providing goods or services [Cou00, Cou04].

• Fairness. If the model is certified by a third-party auditor, customer may obtain guaran-
tees of fair treatment, i.e., the decision process has been the same across all customers.
We note that Supreme Audit Institutions have recently defined best-practices to audit ML
models and certified ML may be soon available in real-world applications [the20, Fed22].

• Privacy. If the model parameters, are proprietary, the bank may publish a (certified)
commitment to, while proving that . = �(-,,) in zero knowledge. This allows the
customer to verify that computation was carried out correctly, while, is kept private
and nothing is leaked other than what can be inferred by the prediction itself.

Despite the rapid progress in the last decade, general-purpose cryptographic proof
systems fail to scale well to very large inputs. The main bottleneck appears at the prover
side, both on running time and memory usage. For example, if one wants to prove the
evaluation of a ML model using an IOP-based proof [BCS16] such as Plonk [GWC19],
one needs to start by committing to the entire computation trace which, for commodity
hardware and medium-sized models, rapidly exhausts the computer’s memory. Among
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the many families of cryptographic proof systems in the literature, sumcheck-based proof
systems [XZZ+19, Set20, GLS+23, XZS22, CBBZ23] achieve the best prover performance,
which is asymptotically optimal: linear in the size of a circuit that performs the computation.
Nevertheless, modelling computation as a circuit introduces high overheads that make
even these systems impractical when executed on computations that process large amounts
of data.

Dedicated proof systems trade-off generality for performance. In particular, they
avoid the general circuit encodings of their general-purpose counterparts, and achieve better
performance, albeit for restricted classes of functions. For example, previous work has
shown how to exploit the sequentiality and low multiplicative depth of some classes of
functions to achieve low overhead both for provers and verifiers. Two examples of concrete
practical interest are proofs of machine learning inference and proofs of image processing.
Works such as vCNN [LKKO20] and zkCNN [LXZ21] enable verifiable ML applications
by exploiting the sequential composition of neural network-like architectures, where data
is processed one layer (i.e, function) at a time and the output of the current layer is fed as
input to the next one. The same principles are used by PhotoProof [NT16] and ZK-IMG
[KHSS22] that exploit the sequential composition of image processing tasks and provide
proof systems tailored to verifiable image processing.

Prior to this thesis, protocols such as the ones above unfortunately present poor com-
posability and leave little room for modification and improvement. This severely limits
their applicability in e.g. data processing pipelines, where different operations are applied
to the inputs sequentially. Moreover, there seems to be room for improving the efficiency
of existing proofs for these applications, both concretely and asymptotically. Therefore, an
important open question in practice is the following:

Can we build proof systems that combine the versatility of general-purpose proofs and the efficiency
of special-purpose proofs?

And, by focusing on the specific applications of machine learning inference and image
processing, we also note the following question:

Can we design and implement efficient and modular proofs for machine learning inference and
image processing?

1.3 Thesis Contributions

1.3.1 Functional Commitments for All Functions

In Chapter 4, we present the first constructions of functional commitments for all functions
based on falsifiable assumptions. Our main contribution is the introduction of a novel
primitive that we call chainable functional commitment (CFC), which extends the function-
ality of FCs by allowing one to 1) open to functions of multiple inputs 5 (x1 , . . . ,x=) that
are committed independently, 2) while preserving the output also in committed form. We

14



1.3. Thesis Contributions

show that CFCs for quadratic polynomial maps generically imply FCs for arithmetic cir-
cuits. Then, we efficiently realise CFCs for quadratic polynomials over pairing groups and
lattices, resulting in functional commitment schemes for arithmetic circuits of unbounded
depth (but bounded width) based on either pairing-based or lattice-based falsifiable as-
sumptions. Additionally, our functional commitments feature useful properties such as
being additively homomorphic and supporting efficient verification with preprocessing.
Using the transformation from [CFT22] that constructs homomorphic signatures from FCs,
we also obtain the first pairing- and lattice-based homomorphic signatures that support
the evaluation of unbounded-depth circuits.

The main drawback of our constructions in Chapter 4 is the size of the commitment
key, which scales as O

(
=5) for a circuit of width =. In Chapter 5, we improve on this

aspect by introducing a new construction of CFCs for quadratic functions which achieves
a commitment key of size O

(
=3) while preserving all the interesting properties of the

previous construction, such as additive homomorphism and efficient verification. For this
scheme, security relies on a series of falsifiable @-type assumptions over pairing groups.
Our construction is built following a modular framework that can be used to simplify the
design principles of other functional commitment schemes.

1.3.2 Circuit-Succinct Algebraic Batch Arguments

In Chapter 6, we give the first algebraic (pairing-based) construction of BARG that is
circuit-succinct, achieving proof size and online verifier runtime O(� · |w|). We achieve our
result by means of a compiler which builds a BARG generically from a new primitive called
projective chainable functional commitment (PCFC). PCFCs are essentially a generalization of
CFCs which support somewhere extraction, subvector projection, and functional openings.
We then construct a PCFC from the standard MDDH assumption in bilinear groups,
extending and generalising the proof systems that conform the functional commitment for
circuits by Wee and Wu [WW24b]. Our black-box transformation may be of independent
interest for understanding the connection between functional commitments and BARGs
and towards obtaining other algebraic constructions of the latter.

1.3.3 Fully-Succinct Multi-Key Homomorphic Signatures

In Chapter 7, we present the first construction of multi-key homomorphic signatures that
are fully succinct while achieving adaptive security under standard falsifiable assumptions.
Our MKHS achieve succinctness poly(�, log =, log C)where = is the number of evaluated
messages and C is the number of users that sign these inputs. Our result is achieved
through a novel combination of batch arguments for NP and functional commitments,
and yields diverse MKHS instantiations for circuits of unbounded depth based on either
pairing or lattice assumptions. For instance, by choosing an adequate BARG and FC, we
can even obtain signatures whose size is constant in = and C, while still supporting arbitrary
functions. Additionally, our scheme supports efficient verification with pre-processing,
and they can easily be extended to achieve multi-hop evaluation (for a constant number of
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steps) and context-hiding.

1.3.4 Modular and Efficient Proofs forMachine Learning and Image Processing

In Chapter 8, we present a family of efficient proof systems for verifiable computation of
sequential operations. Our solutions aim to combine the performance of tailored solutions
for specific applications with the versatility of general-purpose proof systems. The main
tool of our framework is a new information-theoretic primitive called Verifiable Evaluation
Scheme on Fingerprinted Data (VE) that captures the properties of diverse sumcheck-
based interactive proofs, including the well-established GKR protocol [GKR08]. Then, we
show that VEs for specific functionalities can be composed sequentially at an information-
theoretic level, avoiding the notable overhead of committing and opening after every step
and yielding memory-efficient provers. Thanks to this framework, we build proof systems
that enable the verifiability of data-processing pipelines.

We propose a novel VE for convolution operations that can handle multiple input-
output channels and batching, and we use it in our framework to build proof systems for
convolutional neural networks and for image processing operations. We produce a proof of
concept implementation of our schemes and show that we achieve up to 5× faster proving
time and 10× shorter proofs compared to the state-of-the-art, in addition to asymptotic
improvements.
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Related Work

In this chapter, we include a discussion on the state of the art which is centred around
the existing literature at the time of publishing each of the contributions of this thesis.
This overview is meant to complement the introduction to proof systems and succinct
arguments in Section 1.2, and so we do not discuss several of the works that appear there.
Whenever it is relevant, we also include a discussion on concurrent and follow-up work
on the results of this thesis.

2.1 Functional Commitments

The idea of a commitment scheme where one can open to functions of the committed data
was implicitly suggested by Gorbunov, Vaikuntanathan and Wichs [GVW15], although
their construction is not succinct as the commitment size is linear in the length of the vector.
Libert, Ramanna and Yung [LRY16] were the first to formalize succinct functional commit-
ments as a generalization of vector commitments [CFM08, LY10, CF13]. They proposed
a succinct FC for linear forms and showed applications of this primitive to polynomial
commitments [KZG10] and accumulators. Recent works have extended FCs to support
more expressive functions, including linear maps [LM19], semi-sparse polynomials [LP20],
and constant-degree polynomials [ACL+22, CFT22]. Catalano, Fiore and Tucker [CFT22]
also proposed an FC for monotone span programs, which only achieves a weaker notion of
evaluation bindingwhere the adversarymust reveal the committed vector, as for delegation
schemes. A different, but also weaker security model is also considered in [PPS21], who
introduced a lattice-based FC scheme where a trusted authority is assumed to generate,
using a secret key, an opening key for each function for which the prover wants to release
an opening.

Algebraic Delegation Schemes. As pointed out in the introduction, functional commit-
ments for circuits imply delegation schemes (also known as SNARGs for P), and indeed
there are similarities on the design of algebraic constructions of both primitives. The main
difference between delegation schemes and functional commitments is that in the latter, the
input is committed as opposed to publicly known. Even if the input is committed as part of
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the construction, in delegation schemes soundness only holds with respect to adversaries
that reveal such commitment, as in the weak evaluation binding notion of [CFT22].

The pairing-based delegation schemes by González and Ràfols [GR19] and González
and Zacharakis [GZ21] share some similarities with our constructions in Chapter 4 and
Chapter 5. In particular, both constructions also proceed level-by-level in proving the
evaluation of arithmetic circuit (an idea that dates back to the GKR protocol [GKR08]).
Then, the prover (a) computes a set of commitments to the wires at each level, and (b)
proves that the committed vectors are consistent with respect to the circuit evaluation.
We remark that both [GR19, GZ21] require a function-specific setup and, as opposed to
functional commitments, functions cannot be chosen at opening time.

Concurrent Work to Chapter 4. Concurrently to our results in Chapter 4, de Castro and
Peikert [dCP23], and Wee and Wu [WW23b], also propose lattice-based constructions of
functional commitments for circuits (as well as polynomial and vector commitments). Their
approaches differ significantly from ours, as they both rely on homomorphic evaluation
techniques [GSW13]. As a drawback of this approach, none of them support efficient
verification with preprocessing.

The work of [dCP23] constructs a “dual” FC (where one commits to the function 5 and
proves that 5 (x) = y for a given x)1 for bounded-depth boolean circuits. Their construction
is selectively secure under the standard SIS assumption and admits a transparent setup
(i.e., the public parameters are a uniformly random string). Nevertheless, their FC does
not have succinct openings, as the opening size is linear in either the input size or the
size of 5 (in our setting where one commits to 5 and opens to x). The FC in [WW23b]
supports circuits of bounded depth, needs a structured setup, and is secure under a new
structured-BASIS assumption introduced in the samework. Their FC has succinct openings
that are polylogarithmic in the input size and polynomial in the circuit depth, but are not
succinct in the size of the output vector.

Follow-Up Work. After the publication of our results from Chapter 4, there were signifi-
cant advances around functional commitments. First, Wee and Wu introduced a lattice-
based functional commitment scheme in [WW23a] which achieved efficient verification,
together with other improvements such as simpler assumptions. Besides, they provide an
attack against the so-called knowledge :-'-ISIS assumption [ACL+22]. This assumption
was applicable to our lattice-based FC in Chapter 4, as we could use it to prove that the
scheme is both an FC and a SNARK, i.e., that it also satisfies knowledge soundness.

Second, in a different workWee andWu introduced a fully-succinct algebraic functional
commitment scheme from standard assumptions over bilinear groups [WW24b]. This
scheme actually builds on the ideas of our pairing-based FC from Chapter 4, but takes
them a step further by introducing a compression mechanism that achieves constant-size
proofs for all circuits. This work addresses the main open question left by our results,
which is whether one can build an FC with constant-size openings. The main drawback of
1 One can recover the standard notion of committing to x and opening to 5 via universal evaluators.
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their scheme is the size of the public parameters, which grow as O
(
ℓ5
C

)
where ℓC is the

largest supported size for a circuit.
Third, in a very recent work, Wee [Wee25] presents a functional commitment scheme

from the SIS assumption over lattices which, remarkably, presents a CRS which is sublinear
in the size of the inputs, and where the opening proofs grow with the circuit depth.

2.2 Batch Arguments for NP

As we discuss in the introduction, the usual BARG succinctness notion requires that the
proof size is bounded by poly(�, |C|, log :), where : is the size of the batch. An interesting
exception in the state of the art is the BARG for NP of Garg et al. [GSWW22] in which
proofs have size poly(�, log|C|, log :), that is sublinear also in the size of the circuit. With
such a level of succinctness, the BARG of [GSWW22] clearly implies a SNARG for NP that
bypasses the impossibility result of [GW11]. This is possible because the scheme, built
from indistinguishability obfuscation and one-way functions, is non-adaptively sound. In
contrast, in this thesis we focus on building BARGs achieving adaptive soundness, in line
with most of the BARG literature.

Another approach to build BARGs from other cryptographic primitives is that of Kalai
et al. who show how to build BARGs for NP from flexible SNARGs for RAM with partial
input soundness, additionally assuming the existence of rate-1 string OT [KLVW23]. This
construction provides an interesting connection between functional commitments and
BARGs, in a similar spirit to our construction from Chapter 6. This is especially apparent
when observing that their notion of SNARG for RAM is similar to that of functional com-
mitments. However, on a closer look, our approaches are very different. First, as opposed
to our algebraic schemes, their BARG construction is highly non-black-box due to the
recursive usage of the SNARG for RAM. Thus, it cannot yield algebraic BARGs, departing
from one of our main motivations. Second, they do not provide a direct construction of
flexible SNARGs for RAM but show that, in turn, these can be built from BARGs (again,
additionally assuming rate-1 string OT). While this result establishes an interesting connec-
tion between the two primitives, it ultimately does not yield new BARGs since the flexible
SNARG for RAM should be instantiated from existing BARGs and thus from either PCPs
and CI-hash, or from [WW22].

A parallel line of work aims to build increasingly expressive batch arguments to sup-
port computations closer to general NP computations, such as BARGs for monotone
policies [BBK+23, NWW24, NWW25].

2.3 Homomorphic Signatures

The concept of homomorphic signatures was introduced by Desmedt [Des93] and Johnson
et al. [JMSW02] and properly formalized by Boneh and Freeman [BF11]. Starting from
seminal works on linearly-homomorphic signatures, e.g., [BFKW09, GKKR10, AL11, CFW12,
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Fre12, LPJY13, CFGV13, CFN15], the expressivity of HS has significantly improved, cap-
turing bounded-degree polynomials [BF11, CFW14, CFT22], and circuits of logarithmic
depth [KNYY19, CFT22], and bounded polynomial depth [GVW15]. Among these works,
the closest in terms of techniques to the results in this thesis is the one of Catalano, Fiore
and Tucker [CFT22] who first proposed to use functional commitments to build HS. In
their solution, each signer signs a commitment to the vector with <8 in position 8 and
0 elsewhere; the evaluator builds a commitment to the inputs using the additive homo-
morphic property and uses a (single-key) linearly-homomorphic signature to prove that
the commitment is correctly aggregated. Indeed, are able to use this approach directly to
build an homomorphic signature for arbitrary functions from functional commitments in
Chapter 4. Unfortunately, generalizing this approach to the multi-key setting fails, as there
exists no fully-succinct MKHS scheme, not even for linear functions.

Aggregate Signatures. The concept of aggregate signatures was introduced by Boneh
et. al. [BGLS03]. Their initial construction was pairing-based and relied on random
oracles. Since then, constructions have also been proposed from multilinear maps [RS09]
and indistinguishability obfuscation [HKW15]. In recent years, progress on building
BARGs for NP sparked multiple constructions of aggregate signatures from standard
assumptions. Examples include [CJJ21, DGKV22, WW22, Goy24] for =-out-of-= policies,
and [NWW23, BCJP24] for monotone policies.

Multi-Key Homomorphic Signatures. Fiore et al. [FMNP16] introduced the definition
of multi-key homomorphic signatures and proposed a construction that supports circuits
of bounded depth and is weakly succinct (see earlier for a detailed comparison). Lai et
al. [LTWC18] proposed the first fully succinct MKHS by using SNARKs. Their construction
achieves the strong notion of unforgeability under insider corruption, which tolerates adver-
saries that can even corrupt users involved in the input of a computation. Unfortunately,
[LTWC18] also shows that MKHS secure in this model imply SNARGs and thus need
non-falsifiable assumptions. Moreover, in this context one needs the stronger notion of
knowledge-soundness in the presence of signing oracles, for which there are some impossibility
results [FN16].

The state of the art in MKHS includes works that have investigated how to construct
MKHS schemes starting from single-key HS [FP18, SFVA21], as well as constructions that
aim for concrete efficiency for linear functions [AP19, SBB19]. However, with the only
exception of the SNARK-based solution of [LTWC18], all these works feature signatures
whose size grows linearly in the number of users.

Concurrent and Follow-up Work. The results in Chapter 4 imply an homomorphic
signature for arbitrary circuits of unbounded depth. Shortly after, Gay and Ursu presented
a different construction based on indistinguishability obfuscation [GU24]. Separately,
Goyal [Goy24] introduced the notion of mutable BARGs, which can be used to realize
homomorphic signatures. These signatures can be composed a constant number of times.
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Concurrently to our results in Chapter 7 for multi-key homomorphic signatures, Afshar,
Cheng and Goyal [ACG24] improved the result from [Goy24] to obtain multi-hop HS that
can be composed a polynomial number of times. The construction is highly non-black-box
and relies on composition of rate-1 BARGs. Afshar, Cheng and Goyal later extended their
results to realize composable multi-key HS.

2.4 Efficient Proof Systems

The first construction of a SNARG for NP by Kilian [Kil92] is essentially a cryptographic
compilation of probabilistic checkable proofs and an interactive protocol. This construction
was originally far from practical, but its spirit is still present in many SNARGs which do
aim for concrete efficiency. We recall the general blueprint of Kilian’s SNARG and many
other constructions, which consists of three steps.

• Parameter setup. The first step is to establish a set of public parameters that are available
to both prover and verifier. Depending on the proof system, this may include the
specification of a hash function, common randomness, or a so-called common reference
string (CRS), which is a string that includes some correlated information [Dam00]. For
the latter, the CRSmay include a trapdoor that would allow anyone to generate simulated
proofs for any statement.2 Hence, the CRS has to be generated either by a trusted party
or by a distributed protocol ran among multiple parties [BCG+15, NRBB22].

• Commitment. Due to the succinctness requirement, it is not possible to send the entire
NP witness to the verifier, but the prover still needs to encode it in some succinct
representation to be able to prove something about it. The encoding is realised via
a succinct commitment scheme with fine-grained openings. The most popular are vector
commitments [Mer79, CF13], for which one can open a specific position G8 of a vector x,
and polynomial commitments [KZG10], for which one can commit to a polynomial ?
and open its evaluation ?(I) at a specific point I.

• Proof. The final step is to succinctly prove the satisfiability of C for the statement x
and committed witness w. There are a variety of recipes for this step, but generally
they involve: (a) an information-theoretic component such as a probabilistic checkable
proof (PCP) [BFL90, AS92], which is compressed using a commitment scheme, (b) a
public-coin interactive protocol to obtain random verifier’s challenges which is made
non-interactive via the Fiat-Shamir transform [FS87], or (c) a combination of both, such
as in Kilian’s original scheme [Kil92]. We remark that for some constructions such as
those based on linear PCPs [BCI+13], the commitment step is actually implicit in the
proof and not a well-differentiated component.

For example, in Kilian’s SNARG a PCP proof is committed with a Merkle tree [Mer79]
(using it as a vector commitment scheme, such that one can open the commitment to
2 One common example of this is to include correlated group elements. For instance, in a prime order group
setting G, a usual CRS may include elements 6, ℎ1 , ℎ2 , . . . , ℎ= ∈ G such that ℎ8 = 60

8 for some 0 ∈ Z? . Here,
0 is the CRS trapdoor.
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specific positions), and then obtains the verifier challenges via the Fiat-Shamir transform.
Naturally, the security of the scheme relies on the random oracle model [BR93]. Nowadays,
there exist many valid recipes that offer different efficiency/security/succinctness trade-
offs. Some notable approaches are SNARGs based on linear PCPs and quadratic span
programs [GGPR13, PHGR13, Lip13, DFGK14, Gro16, GNS23], SNARGs based on (poly-
nomial) interactive oracle proofs (IOPs) [BCR+19, CHM+20, MBKM19, GWC19, CFF+21],
and SNARGs based on folding arguments [BGH19, KST22, KP23], which have recently led
to efficient constructions of lattice-based SNARGs [BS23, BC24, FKNP24, KLNO24, CB25].
Of particular interest to us is the approach of building SNARGs from sumcheck-based
interactive proofs, which we introduce below.

Sumcheck-based proofs. Sumcheck-based proofs are a family of cryptographic proof sys-
tems that rely on the sumcheck protocol [LFKN92], an interactive protocol for proving that
the sum of all values of a polynomial over a certain space (such as the boolean hypercube)
equals a given constant. The seminal paper of Goldwasser, Kalai and Rothblum [GKR08]
showed how to use the sumcheck protocol to construct a doubly-efficient interactive proof
(known as GKR in the literature) for layered arithmetic circuits. Several papers improved
the proving time of GKR either in general [CMT12a], for circuits with specific structure
[Tha13, WJB+17, ZGK+18] or through variants of the original protocol [XZZ+19, ZLW+21].
Thaler was the first to show sumcheck-based protocols for specialized computations, such
as matrix multiplications, with optimal prover time [Tha13]. Another line of work, started
by Zhang et al. [ZGK+17], showed how to use GKR in combination with polynomial
commitments to build (zero-knowledge) SNARGs [WTs+18, XZZ+19, Set20, ZXZS20]. Ar-
guments based on this approach, and especially those where sumcheck is applied on
multilinear polynomials, are among the most efficient ones for proving time. Indeed, most
of their computational effort relates to an information-theoretic-secure protocol involving
only a linear number (in the size of the computation) finite field operations. Recent works
show how to combine the sumcheck protocol with multilinear polynomial commitments
to build succinct non-interactive arguments [GLS+23, XZS22, CBBZ23].

In Chapter 8, we present a modular composition framework that is close in the spirit to
that of Campanelli, Fiore and Querol [CFQ19] who build zk-SNARKs modularly via the
efficient composition of specialized commit-and-prove SNARKs. Our techniques work at
the information-theoretic level and are based on polynomial evaluations as opposed to com-
mitments and SNARKs, allowing for a less demanding security notion than computational
binding and thus for improved efficiency.

2.4.1 Proofs for Machine Learning and Image Processing

Machine Learning. For applications to verifiable Machine Learning, the closest work
to our contributions in Chapter 8 is zkCNN [LXZ21] which shows how to exploit the se-
quential nature of neural networks to build a tailored argument system. vCNN [LKKO20]
and ZEN [FQZ+21] also tackle the problem of zero-knowledge neural network predictions.
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vCNN combines different commit-and-prove SNARKs to efficiently prove the CNN layers,
notably they use quadratic polynomial programs for convolution layers and quadratic
arithmetic programs for ReLU and Pooling layers. ZEN presents a quantisation mecha-
nism (based on [JKC+18]) for R1CS-based proof systems that achieves significantly less
constraints and hence a faster proving time and smaller public parameters. Although we
do not directly compare our contributions to vCNN and ZEN in Chapter 8, we observe
that [LXZ21] shows that zkCNN is orders of magnitude faster than vCNN and ZEN, and
thus by improving over zkCNN our work also improves on the former.

After our contributions in Chapter 8 were published, a series of works provided further
improvements on verifiable machine learning. These include works for verifiable decision
trees [CFF+24, PP24], for proofs of neural network training [GGJ+23, APKP24], and for
inference of large language models [SLZ24].

Image Processing. Besides solutions based on general-purpose zkSNARKs, there are
a few works that build specialized proof systems for image processing transformations,
notably PhotoProof [NT16], ZK-IMG [KHSS22], and VILS [CHN+22]. PhotoProof [NT16]
presents an image authentication framework where images are output by “secure” cameras
(i.e., cameras capable of signing images) and Proof-Carrying Data [CT10] is used to define
a set of admissible transformations. The PhotoProof prototype is based on libsnark
[sci17] and experiments show that proving one transformation of a 128 × 128 image takes
more than 300 seconds and a public key of a few GBs. ZK-IMG [KHSS22] improves over
PhotoProof by using halo2 [ZCa22] as the underlying ZK-SNARK system and by showing
how to chain proofs of sequential transformations without revealing the intermediate
outputs—a feature that may be desirable in scenarios where the input image is private.
Performance reported in [KHSS22] show that convolution operations can take more than
80 seconds to generate a proof for images of 1280 × 720 pixels. Finally, VILS [CHN+22]
takes an alternative approach to authenticated image editing by computing all possible
image transformation at the source (i.e., by the secure camera) and accumulating them in
a cryptographic accumulator.

Following up the publication of our results, several works introduced improvements
and novel approaches to verifiable image processing [DEH25, MVVZ24, DCB25].
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Background

3.1 Notation

The definitions, games, and constructions in this thesis use standard notation. Algorithms,
oracle names, and cryptographic parameters are denoted in sans-serif font.

Functions and algorithms. We denote the security parameter by � ∈ N, and its unary
representation by 1�. The security parameter measures the level of security of crypto-
graphic schemes and indicates the amount of computational resources required to break
the scheme: for a given security parameter �, one needs Θ

(
2�

)
operations. We call a func-

tion & negligible, denoted &(�) = negl(�), if &(�) = $(�−2) for every constant 2 > 0, and call
a function ?(�) polynomial, denoted ?(�) = poly(�), if ?(�) = $(�2) for some constant 2 > 0.
We say that an algorithm is probabilistic polynomial time (PPT) if it consumes randomness
and its running time is bounded by some ?(�) = poly(�). For a finite set (, G ←$ ( denotes
sampling G uniformly at random in (. For an algorithm �, we write H ← �(G) for the
output of � on input G. Sometimes, to remark that an algorithm is randomized, we may
write H ←$ �(G). An algorithm can input or return blank values, represented by ⊥. In
interactive algorithms, we underline steps that involve interaction, such as Send or Get.

Sets, vectors, strings. For a positive = ∈ N, [=] is the set {1, . . . , =}. We denote vectors x
and matrices M using bold fonts. For a ring ℛ, given two vectors x, y ∈ ℛ= , z := (x ⊗ y) ∈
ℛ=2 denotes their Kronecker product (that is a vectorization of the outer product), i.e.,
∀8 , 9 ∈ [=] : I8+(9−1)= = G8H 9 . Given two strings G, H, we denote their concatenation by G|H.
We write 0: and 1: for the vectors of : zeros and ones respectively. We useℳ to denote the
message space, and sometimes ℳ̄ ⊆ ℳ for some message subspace, for all cryptographic
primitives considered. We denote the message space of dimension ℓ byℳℓ . To denote a
(sub)vector with coordinates in a position subset � ⊆ [ℓ ], we write x� ∈ ℳ� .

3.2 Bilinear Groups

A bilinear group generator ℬG(1�) is an algorithm that returns bgp := (@,G1 ,G2 ,G) , 61 , 62),
where G1, G2, G) are groups of prime order @, 61 ∈ G1 and 62 ∈ G2 are fixed generators,
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and 4 : G1 ×G2 → G) is an efficiently computable, non-degenerate, bilinear map. In our
work we use Type-3 groups in which it is assumed that there is no efficiently computable
isomorphism between G1 and G2. We use the bracket notation of [EHK+13] for group
elements: for B ∈ {1, 2, )} and G ∈ Z@ , [G]B denotes 6GB ∈ GB . We use additive notation for
G1 and G2 and multiplicative notation for G) . We note that given an element [G]B ∈ GB ,
for B = 1, 2, and a scalar 0, one can efficiently compute 0 · [G] = [0G] = 60GB ∈ GB ; given
group elements [0]1 ∈ G1 and [1]2 ∈ G2, one can efficiently compute [01]) = [0]1 · [1]2.
For a matrix A ∈ Z<×=@ , we represent a matrix of group elements 6A

B as [A]B ∈ G<×=
B .

3.3 Lattices

3.3.1 Lattice Preliminaries

Let ℛ = Z[�], where � is a fixed primitive <-th root of unity, be the ring of integers of
the <-th cyclotomic field of degree 3 = !(<), where elements are represented by their
coefficient embedding G =

∑3−1
8=0 G8 · �8 . If < is a prime-power (resp. power of 2), we call ℛ

a prime-power (resp. power-of-two) cyclotomic ring. For the rest of this section we will
assume that < = poly(�).

For G ∈ ℛ, write ‖G‖ B max3−1
8=0 |G8| for the infinity norm induced on ℛ by Z. The norm

generalises naturally to vectors u = (D1 , . . . , D=) ∈ ℛ= , with ‖u‖ B max=
8=1‖D8‖. For @ ∈ N,

write ℛ@ B ℛ/@ℛ. We always assume that @ is a (rational) prime. By a slight abuse of
notation, we identity ℛ@ with its balanced representation, i.e. if G =

∑3−1
8=0 G8 · �8 ∈ ℛ@ then

|G8| ≤ @/2 for all 8. The set of units, i.e., invertible elements, in ℛ@ is denoted by ℛ×@ .
The ring expansion factor �ℛ ofℛ is defined as �ℛ B max0,1∈ℛ ‖0·1‖

‖0‖·‖1‖ . It is known [AL21]
that if ℛ is a prime-power cyclotomic ring then �ℛ ≤ 2 · 3, and if ℛ is a power-of-two
cyclotomic ring then �ℛ ≤ 3.

3.3.2 Lattice Trapdoors

We recall the following standard algorithms (e.g., [GPV08, MP12, GM18]) associated to
lattice trapdoors and their properties for sufficiently large “leftover hash lemma parameter”
lhl(ℛ, �, @, �) = $(� log� @):

• (A, tdA) ← TrapGen(ℛ, 1� , 1� , @, �): The trapdoor generation algorithm generates a ma-
trix A ∈ ℛ�×�

@ along with a trapdoor tdA. It is assumed that (�, �, @, �) are implicitly
specified by tdA. When � ≥ lhl(ℛ, �, @, �), the distribution of A is within negl(�) statistical
distance of*(ℛ�×�

@ ).

• u← SampD(ℛ, 1� , 1� , @, �′): The domain sampling algorithm samples a vector u ∈ ℛ�

with norm ‖u‖ ≤ �′. When �′ ≥ � and � ≥ lhl(ℛ, �, @, �), then the distribution of
(A,A · u mod @) for a uniformly random A←$ ℛ�×�

@ is within negl(�) statistical distance
of*(ℛ�×�

@ × ℛ�
@).

• u ← SampPre(tdA , v, �′): The preimage sampling algorithm inputs a vector v ∈ ℛ=@
and outputs a vector u ∈ ℛ�. If the parameters (�, �, @, �) of tdA satisfy �′ ≥ � and
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� ≥ lhl(ℛ, �, @, �), then u and v satisfy A · u = v mod @ and ‖u‖ ≤ �′. Furthermore,
u is within negl(�) statistical distance to u ← SampD(ℛ, 1= , 1� , @, �′) conditioned on
A · u = v mod @.

3.4 Commitment Schemes and Advanced Properties

Commitment schemes allow aparty to succinctly commit to a value or vector of valueswhile
keeping them hidden, and later reveal them along with an opening proof. Commitments
are ubiquitous in the design of advanced cryptographic primitives and protocols, and so
are they in this thesis.

Next, we introduce a general definition of commitment schemes for vectors that consid-
ers both deterministic and randomized commitments, as well as the possibility to commit
to subvectors explicitly. For the latter, we allow the commitment algorithm to additionally
input an index set � ∈ J ⊆ 2[ℓ ] where ℓ is the maximum vector length, and commit to a
(sub)vector x ∈ ℳ� , and extend the other algorithms accordingly. Although not often
considered explicitly in definitions, such a functionality is naturally supported by common
commitment schemes.

Definition 3.1 (Commitment). A commitment scheme for an index set family J ⊆ 2[ℓ ] is a tuple
of PPT algorithms (Setup,Com,Open,Ver) with the following syntax:

Setup(1� , 1ℓ ) → ck: On input the security parameter � and the vector length ℓ , output a commit-
ment key ck.

Com(ck, � ,x; A) → (com, aux): On input the commitment key ck, an index set � ∈ J , a vector
x ∈ ℳ� , and input randomness A, output a commitment com and auxiliary information aux.1

Open(ck, aux) → open: On input the commitment key ck and auxiliary information aux, outputs
an opening open.2

Ver(ck, com, � ,x, open) → 1: On input the commitment key ck, a commitment com, an index set
� ∈ J , a vector x ∈ ℳ� and an opening open, output accept (1 = 1) or reject (1 = 0).

The index set � is taken as � = [ℓ ] when omitted. A commitment scheme must satisfy the
following properties:

Correctness. For every �, ℓ ∈ N, any � ∈ J and any input x ∈ ℳ� ,

Pr

[
Ver(ck, com, � ,x, open) = 1

����� ck← Setup(1� , 1ℓ )
(com, aux) ← Com(ck, � ,x) open← Open(ck, aux)

]
= 1.

1 In our constructions, we often omit A from the inputs; in such a case we assume either that A is randomly
sampled or that the commitment algorithm is deterministic.

2 In the literature, it is usual to consider definitions of commitments where the opening is output by the
commitment algorithm (instead of the auxiliary information).
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Computational binding. For any PPT adversaryA and vector length ℓ = poly(�),

Pr


Ver(ck, com, � ,x, open) = 1

∧ Ver(ck, com, �′,x′, open′) = 1

��������
ck← Setup(1� , 1ℓ )
(com, � ,x, �′,x′, open, open′) ← A(ck)
� , �′ ∈ J ∧ x,x′ ∈ ℳ�

 ≤ negl(�).

Succinctness. For any �, ℓ ∈ N, x ∈ ℳℓ , it holds that |com| ≤ poly(�, log ℓ ).

Randomized commitments may also satisfy the following property:

Statistical Hiding. For any 1� , ℓ ∈ N, ck← Setup(1� , 1ℓ ), any � , �′ ∈ J and any pair of inputs
x ∈ ℳ� and x′ ∈ ℳ�′, the following distributions are negl(�) statistically close:

{com : (com, aux) ← Com(ck, � ,x)} ≈
{com′ : (com′, aux′) ← Com(ck, �′,x′)}.

The scheme is perfectly hiding if both distributions are identical.

Remark 3.2. Throughout this thesis, we often consider deterministic commitments. In this case,
we assume that the opening information is the committed vector itself. We also do not consider a
verification algorithm explicitly as the verifier can simply recompute the deterministic commitment
given the input vector. Therefore, we simply introduce them as (Setup,Com).

Remark 3.3. We assume that all algorithms taking a commitment key ck as input have random
access to ck. This is to capture schemes where the commitment key consists of many components
and where not all algorithms need access to all components.

3.4.1 Additive Homomorphism

A commitment scheme is additively homomorphic if given two commitments com1 and
com2 to vectors x1 and x2 respectively, there exists an efficient algorithm to compute a
commitment to x1 + x2. We follow the description of [CFT22].

Definition 3.4 (Additive-homomorphic commitments). Let Com be a commitment scheme
where the message spaceℳ is a ring. Com is additive homomorphic if there exist deterministic
algorithms:

• Com.Add(ck, com1 , . . . , com=) → com,

• Com.Addaux(ck, aux1 , . . . , aux=) → aux, and

• Com.AddA(ck, A1 , . . . , A=) → A

such that for any x8 ∈ ℳ and (com8 , aux8) ← Com(ck,x8; A8), if com ← Com.Add(ck, com1 ,

. . . , com=), aux ← Com.Addaux(ck, aux1 , . . . , aux=), and A ← Com.AddA(ck, A1 , . . . , A=), then
(com, aux) = Com(ck,

∑=
8=1 x8; A).
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3.4.2 Aggregatability

For deterministic commitments, we define a notion of aggregatability which allows to
aggregate commitments of subvectors with disjoint index sets into a commitment of the
union. Naturally, any additive-homomorphic commitment scheme is aggregatable, as one
can aggregate commitments to subvectors by summing them up.

Definition 3.5 (Aggregatable commitments). Let J ⊆ 2[ℓ ] be an index set family and Ĵ ⊂ J .
A commitment scheme is aggregatable if

• there exist a deterministic aggregation algorithm Agg(ck, (com�)�∈Ĵ ) → com, which takes as
input the commitment key ck and tuples of commitments (com�)�∈Ĵ and outputs a commitment
com in time at most poly(�, log ℓ ) · |Ĵ |, and

• if � ∩ �′ = ∅ for all distinct � , �′ ∈ Ĵ , then for any x� ∈ ℳ� for � ∈ Ĵ , the following property is
satisfied:

Pr


Agg(ck, (com�)�∈Ĵ ) = com

���������
ck← Setup(1� , 1ℓ )
com� ← Com(ck, � ,x�) ∀� ∈ Ĵ

com← Com
(
ck,

⋃
�∈Ĵ � ,

⋃
�∈Ĵ x�

)

= 1.

The definition can be relaxed, but made more complicated, to allow for probabilistic
commitments. We omit it as we do not use this property in this thesis.

3.4.3 Local Updatability

We introduce a notion of local updatability for deterministic commitments that is central
to the results of Chapter 7. A commitment scheme supports local updatability if one can
update a commitment com at a position 8 ∈ [ℓ ] (or more generally, at a set of positions
( ⊆ [ℓ ]) in a succinct way. Namely, the update must be verifiable in time O(�, log ℓ , |(|).

Local update soundness is defined such that given an honestly generated commitment
com to x, and a set of updates {G′

8
}8∈( that update x to x′, it must be hard to forge a valid

update from com to any com′ such that com′ does not commit to x′. For this property, we
enforce that commitments com are deterministic.

Definition 3.6 (Local updatability). A deterministic commitment scheme Com is locally updat-
able if there exists a pair of algorithms (Upd,VerUpd) as follows:

Com.Upd(ck, aux, (, {G′
8
}8∈() → (com′, aux′,�) on input the commitment key ck, auxiliary in-

formation3 aux, a set of positions ( ⊆ [ℓ ], and updates {G′
8
}8∈(, outputs an updated deterministic

commitment com′, updated auxiliary input aux′, and an update proof �.

Com.VerUpd(ck( , (, com, {G8}8∈( , com′, {G′
8
}8∈( ,�) → 0/1 on input a section of the commit-

ment key ck(, a commitment com, a set of positions ( ⊆ [ℓ ], inputs {G8}8∈(, updates {G′8}8∈(, an
updated deterministic commitment com′ and an update proof �, accepts (outputs 1) or rejects
(outputs 0).

3 We note that in some algebraic schemes, only the section of aux corresponding to the set ( may be needed.
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Let x′ ← Up(x, {G′
8
}8∈() be a function that updates x to x′, i.e., outputs a vector x′ that

contains G8 at every coordinate 8 ∉ (, and G′8 at every 8 ∈ (. Then, these algorithms must satisfy
the following properties.

Correctness. For any ℓ ∈ N, any 5 :ℳℓ →ℳ< in the class ℱ , any x ∈ ℳℓ , any set ( ⊆ [ℓ ],
and any set {G′

8
}8∈( such that G′

8
∈ ℳ ∀8 ∈ (, we have:

Pr


VerUpd(ck( , (, com, {G8}, com′, {G′8},�) = 1

∧ (com′, aux′) = Com(ck,x′)
:

ck← Setup(1� , 1ℓ )
(com, aux) ← Com(ck,x)

x′← Up(x, {G′8}8∈()
(com′, aux′,�) ←
Com.Upd(ck, aux, (, {G′8})


= 1.

Soundness. For any PPT adversaryA, the following probability is negl(�):

Pr


VerUpd(ck( , (, com, {G8}, com′, {G′8},�) = 1

∧ com′ ≠ Com(ck,x′)
:

ck← Setup(1� , 1ℓ )
(com, aux) ← Com(ck,x)

((, {G′8}, com′,�) ← A(ck, com, aux)
x′← Up(x, {G′8}8∈()


.

Succinctness. For any admissible parameters, the update proof |�| ≤ poly(�, log ℓ ) · O(|(|).
Besides, Com.VerUpd runs in time bounded by poly(�, log ℓ ) · O(|(|).

Most commitment constructions in the literature do not explicitly state a local updata-
bility property, even though many present it naturally. One such way to achieve local
updatability, such as in the schemes in [CFT22, WW24b] and in Chapter 4 and Chapter 5,
is via additive homomorphism.

3.5 Proof Systems

Next, we introduce a standard definition of arguments of knowledge, both for the in-
teractive and non-interactive variants. We denote ' : X × W → {0, 1} to be a binary
relation defined over instances X and witnessesW . We say that x ∈ X , w ∈ Y are a valid
statement-witness pair whenever '(x, w) = 1.

Definition 3.7 (Interactive Argument of Knowledge). An interactive argument of knowledge
AoK for an NP relation ℛ is a tuple of algorithms (Setup,Prove,Ver) such that:

Setup(1� ,ℛ) → crs outputs a common reference string crs.

〈Prove(w),Ver〉(crs, x) → (�, 1) are a pair of interactive algorithms that on input the common
reference string crs, the statement x and (only for Prove) a witness w, output a proof transcript �
and an acceptance bit 1.

Besides, an interactive argument of knowledge satisfies the following two properties:
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Completeness. AoK is complete if for any� ∈ N and (x, w) ∈ ℛ it holdsPr[〈Prove(w),Ver〉(crs, x) →
1] = 1 where crs← Setup(1� ,ℛ).

Knowledge-soundness. For any PPT adversaryA there exists a polynomial-time extractor ℰ
such that

Pr


〈A,Ver〉(crs, x) → 1

∧(x, w) ∉ ℛ

��������
crs← Setup(1� ,ℛ)
x←A(crs)
w← ℰA()

 = negl(�).

Definition 3.8 (Non-Interactive Argument of Knowledge). A non-interactive argument of
knowledge NARK for an NP relation ℛ is a tuple of algorithms (Setup,Prove,Ver) such that:

Setup(1� ,ℛ) → crs outputs a common reference string crs.

Prove(crs, x, w) → � on input crs, a statement x and a witness w such that (x, w) ∈ ℛ, it returns
a proof �.

Ver(crs, x,�) → 1 given crs, a statement x and a proof �, it outputs 1 (accept) or 0 (reject).

Besides, a non-interactive argument of knowledge satisfies the following two properties:

Completeness. NARK is complete if for any� ∈ N and (x, w) ∈ ℛ it holdsPr[Ver(crs, x,Prove(crs, x, w)) =
1] = 1 where crs← Setup(1� ,ℛ).

Knowledge-soundness. For any PT adversaryA there exists an extractor ℰ (taking the same
input ofA including the random tape �) such that

Pr


Ver(crs, x,�) = 1

∧(x, w) ∉ ℛ

��������
crs← Setup(1� ,ℛ)
(x,�) ← A(crs; �)
w← ℰ(crs; �)

 = negl(�).

We briefly introduce two notions that are relevant for arguments of knowledge: zero-
knowledge and commit-and-prove arguments. For simplicity, we introduce them for
non-interactive arguments of knowledge. For an extensive treatment, we refer to [CFQ19].

Definition 3.9 (Zero-knowledge NARK). A non-interactive argument of knowledge NARK
is computationally (resp. statistically, perfectly) zero-knowledge if there exists a simulator Sim =

(Sim0 , Sim1) such that:

(a) Sim0(1� ,ℛ) → (crs, td) generates a crs that is computationally (resp. statistically, perfectly)
indistinguishable from that generated by Setup, and

(b) for any (x, w) ∈ ℛ, and (crs, td) ← Sim0(1� ,ℛ), Sim1(td, x) generates proofs that are computa-
tionally (resp. statistically, perfectly) indistinguishable from those generated by Prove(crs, x, w).

Definition 3.10 (Commit-and-Prove NARK.). A commit-and-prove non-interactive argument
of knowledge for a relation ℛ and a commitment scheme Com is an argument of knowledge
for the NP relation ℛCom such that ((x, com); (D, open, w)) ∈ ℛCom iff (x, (D, w)) ∈ ℛ and
Com.Ver(ck, com, D, open) = 1.
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We also introduce the general notion of interactive proofs for the language of verifiable
computation, given by tuples ( 5 , G, H) where 5 is a function, G is an input to 5 , and H is an
output of 5 .

Definition 3.11 (Interactive Proof for Verifiable Computation). Let ℱ be a family of functions,
and let ℒℱ = {( 5 , G, H) : 5 ∈ ℱ ∧ 5 (G) = H} the language that corresponds to the correct compu-
tation of a function 5 (G). An interactive proof for ℒℱ is a pair of algorithms 1 ← 〈P,V〉 ( 5 , G, H)
such that the following properties hold:

Completeness. For any ( 5 , G, H) ∈ ℒℱ , Pr[〈P,V〉 ( 5 , G, H) → 1] = 1.

ε-Soundness. For any algorithm P∗ and ( 5 , G, H) ∉ ℒℱ ,

Pr[〈P∗ ,V〉 ( 5 , G, H) → 1] ≤ &.

The probabilities are defined over the random coins of the verifier.

3.6 Digital Signatures

Definition 3.12 (Digital signature). A digital signature scheme Σ = (KeyGen, Sign,Ver) is
defined as the following tuple of efficient algorithms.

KeyGen(1�) → (sk, vk): On input the security parameter, creates a public-private key pair (sk, vk)

Sign(sk, <) → �: On input a message < ∈ ℳ and the secret key sk, generates a signature �.

Ver(vk, �, <) → 1: Given a signature �, a message < ∈ ℳ and a public key pk, outputs 1 ∈
{0, 1}, indicating acceptance or rejection.

We say that the signature scheme is correct if for any admissible < ∈ ℳ and all choices of
randomness, if (sk, vk) ←$ KeyGen(1�) and �←$ Sign(sk, <), then Ver(vk, �, <) = 1.

Definition 3.13 (EUF-CMA security for signatures). Let Σ be a signature scheme. Existen-
tial unforgeability, or EUF-CMA security, for Σ is defined via the game EUF-CMAA,Σ(�)
depicted in Figure 3.1. We define the advantage of adversaryA in the game

Adveufcma
A,Σ (�) B Pr[EUF-CMAA,Σ(�) = 1].

We say that Σ is EUF-CMA if for all PPT adversariesA we have Adveufcma
A,Σ (�) = negl(�).

3.7 Somewhere Extractable Commitments

We recall the notion of somewhere extractable commitment scheme from [CJJ22, WW22],
which is closely related to the notion of somewhere statistically binding hash functions
introduced in [HW15, OPWW15]. In a nutshell, a somewhere extractable commitment
is a vector commitment [CF13] with a dual-mode, programmable commitment key dk.
In extractable mode, a trapdoor td allows one to extract at the programmed location 8∗.
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EUF-CMAA,Σ(�):

(sk, vk) ←$ Σ.KeyGen(1�)
LSig ← ∅

(<, �) ← AOSign(pk)
Output 1 iff Σ.Ver(pk, �, <) = 1 ∧ < ∉ LSig

Oracle OSign(<)
�←$ Σ.Sign(sk, <)
LSig ← LSig ∪ {<}
return �

Figure 3.1: EUF-CMA security game for a signature scheme Σ.

Moreover, a commitment key in extractable mode is indistiguishable from a key in normal
mode.

Without loss of generality, we adopt the convention that SEC admits local verification,
where the commitment key dk naturally splits into sub-keys {dk8}8∈[ℓ ], not necessarily
disjoint. Then, the verification algorithm at location 8 requires only to read dk8 . If this
property does not apply to a given SEC scheme, one can simply let dk8 B dk ∀8 ∈ [ℓ ].

Definition 3.14 (Somewhere Extractable Commitment, adapted from [CJJ22, WW22]). A
somewhere extractable commitment scheme SEC with local verification is a tuple of algorithms
SEC = (Setup,Com,Open,Ver) defined as follows.

Setup(1� , 1ℓ , �) → dk : On input the security parameter �, the input length ℓ , and the block size
�, outputs a commitment key dk.

Com(dk,x) → (com, aux) : On input the commitment key dk, and a vector x ∈ ℳℓ�, outputs a
commitment com and auxiliary input aux.

Open(dk, aux, 8) → �8 : On input the commitment key dk, the auxiliary input aux, and an index
8, outputs a local opening �8 .

Ver(dk8 , com, 8 , G8 ,�8) → 1 : On input the (local) verification key dk8 , the commitment com, an
index 8 ∈ [ℓ ], an input G8 ∈ ℳ�, and a proof �8 , outputs a bit 1 ∈ {0, 1}.

In addition, SEC must include the following trapdoor-extraction algorithms:

TdSetup(1� , 1ℓ , �, 8∗) → (dk, td) works as the setup algorithm, and additionally outputs a trap-
door td associated to index 8∗.

Ext(td, com, 8∗) → G8∗ On input a trapdoor td, a commitment com and an index 8∗, extracts an
input G8∗ .

Moreover, the algorithms must satisfy the following properties:

Correctness. For any � ∈ N, any integers ℓ , �, index 8 ∈ [ℓ ], and admissible inputs x ∈ ℳ=�,

Pr

 Ver(dk8 , com, 8 , G8 ,�8) = 1

�������
dk← Setup(1� , 1ℓ , �, 8)
(com, aux) ← Com(dk,x)
�8 ← Open(dk, aux, 8)

 = 1
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Succinct local verification. For any admissible set of parameters, there exists a function BSEC(�, ℓ , �) =
poly(�, �) · >(ℓ ) such that the following properties hold:

• Succinct local verification keys: |dk8| ≤ BSEC(�, ℓ , �).
• Succinct commitments: |com| ≤ BSEC(�, ℓ , �).
• Succinct local openings: |�8| ≤ BSEC(�, ℓ , �).
• Fast local verification: Ver(dk8 , com, 8 , G8 ,�8) runs in time ≤ BSEC(�, ℓ , �).

Setup indistinguishability. For any PPT adversaryA, and any integers ℓ , �,

Pr

[
A(dk) = 1

����� 8∗ ←A(1� , 1ℓ , �)(dk, td) ← TdSetup(1� , 1ℓ , �, 8∗)

]
−Pr

[
A(dk) = 1

����� 8∗ ←A(1� , 1ℓ , �)dk← Setup(1� , 1ℓ , �)

]
≤ negl(�)

Somewhere extractability. For any PPT adversaryA, and any integers ℓ , �,

Pr


Ver(dk8∗ , com, 8∗ , G8∗ ,�8∗) = 1
∧ Ext(td, com, 8∗) ≠ G8∗

�������
8∗ ←A(1� , 1ℓ , �)
(dk, td) ← TdSetup(1� , 1ℓ , �, 8∗)
(com, G8∗ ,�8∗) ← A(dk)

 ≤ negl(�)

3.8 Multilinear Extensions

We recall the notion of a multilinear extension (MLE), which is a polynomial extension of
a function 5 defined over binary vectors {0, 1}ℓ to a polynomial 5̃ defined over the whole
space Fℓ .

Definition 3.15 (Multilinear extension). Let 5 : {0, 1}ℓ → F be a function. The multilinear
extension 5̃ of 5 is the unique multilinear polynomial 5̃ : Fℓ → F such that 5 (x) = 5̃ (x) for all
G ∈ {0, 1}ℓ . It has the following closed form:

5̃ (x) =
∑

b∈{0,1}ℓ
�̃(x, b) · 5 (b)

Where �̃(x, b) = ∏ℓ
8=1 ((1 − G8)(1 − 18) + G818) is the MLE of the indicator function � : {0, 1}ℓ ×

{0, 1}ℓ → {0, 1} such that �(x, b) = 1 if x = b and �(x, b) = 0 elsewhere.

For = ∈ N and a vector x ∈ F= and ℓ = dlog =e, there exists a (unique) indexing function
5x : {0, 1}ℓ → F given by 5x(b) = G8 where b = (11 , . . . , 1ℓ ) is the binary representation of 8.
Then, we define the MLE of x, that we denote by x̃ : Fℓ → F, as the MLE of the indexing
function 5x.

Intuitively, a multilinear extension acts as an “error-correcting code” of the underlying
function, as if two functions 5 , 5 ′ differ (even if it is on a single value), their multilinear
extensions will differ almost everywhere, due to the Schwartz-Zippel lemma that we
introduce below.
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Lemma 3.16 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let F be a field and let 5 : Fℓ → F be
a polynomial of total degree at most 3. Then,

Pr
x←$Fℓ

[
5 (x) = 0

]
≤ 3

|F| .

Finally, we introduce a lemma on the computational complexity of evaluating multilin-
ear extensions.

Lemma 3.17 ([VSBW13]). Given 5 (x) for all x ∈ {0, 1}ℓ and a vector r ∈ Fℓ , the value 5̃ (r) can
be computed in O

(
2ℓ

)
time and O

(
2ℓ

)
space.
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Part I

Succinct Proof Systems from Standard
Assumptions
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4

Chainable Functional Commitments for
Circuits

In this chapter, wepresent the first constructions of functional commitments for unbounded-
depth circuits from pairing-based and lattice-based falsifiable assumptions. The chapter
is primarily based on the results from the article “Chainable Functional Commitments for
Unbounded Depth Circuits” [BCFL23].1 We additionally include some results on functional
commitments that appear in [ABF24].

The chapter is structured as follows. In Section 4.1 we summarize our contributions,
including the main results and their implications, followed by a technical overview in
Section 4.2. In Section 4.3, we introduce functional commitments. In Section 4.4 we define
our new primitive of chainable functional commitments (CFC). In Section 4.5, we present
a generic compiler that translates a CFC for quadratic functions into a FC for arbitrary
arithmetic circuits. Finally, in Section 4.6 and Section 4.7 we present algebraic constructions
of CFCs for quadratic functions from bilinear groups and lattices, respectively.

4.1 Contributions

We present the first constructions of Functional Commitments that support the evalu-
ation of arbitrary arithmetic circuits of unbounded depth2 and are based on falsifiable
assumptions. Our FC schemes are also chainable, meaning that it is possible to open to func-
tions of multiple committed inputs while preserving the output to be in committed form.
To capture such functionality, we introduce a novel primitive called Chainable Functional
Commitment (CFC).

In our FC schemes only the maximal width of the circuits has to be fixed at setup time.
The size of the commitments is succinct in the input size; the size of functional opening

1 Some results from [BCFL23] are omitted for conciseness, notably those related to strong evaluation binding
and extractability of our constructions, as well as an analysis of our security assumptions. We refer the
reader to the full version of the paper for a complete treatment of these results.

2 Looking ahead, our pairing-based instantiation supports arithmetic circuits over Z@ , while our lattice-based
instantiation supports arithmetic circuits over cyclotomic rings Z[�]where wires carry values of bounded
norm.
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4. Chainable Functional Commitments for Circuits

proofs grows with the multiplicative depth 3C of the evaluated circuit C , but is other-
wise independent of the circuit’s size or the input length. Notably, our FCs provide an
exponential improvement compared to previous ones that could only support polyno-
mials of degree � = $(1)with an efficiency (prover time and parameter size) degrading
exponentially in � (as $(ℓ �))3 [ACL+22, CFT22].

We design our FCs for circuits in two steps: (1) a generic construction of an FC for
unbounded-depth circuits based on CFCs for quadratic functions, and (2) two realizations
of CFCs, one based on bilinear pairings and one based on lattices. The pairing-based CFC
relies on a new falsifiable assumption that we justify in the bilinear generic group model,
while the lattice-based CFC relies on a slight extension of the :-'-ISIS assumption recently
introduced in [ACL+22]. Using either one of these two CFC constructions (and considering
a few tradeoffs of our generic construction), we obtain a variety of FC schemes.

Our FC schemes enjoy useful additional properties.

1. They are additively homomorphic, which as shown in [CFT22] makes the FC updatable
and allows for building homomorphic signatures (HS). Notably, our new FC for circuits
yields newHS realizations that advance the state of the art (see slightly below for details).

2. They enjoy amortized efficient verification, which means that the verifier can precompute a
verification key vkC associated to a circuit C and use this key (an unbounded number of
times) to verify functional openings for C in time (asymptotically) faster than evaluating
C .

3. Our FC schemes can be easilymodified to have perfectly hiding commitments and efficiently
compiled into FCs with zero-knowledge functional openings.

Both efficient verification and zero-knowledge functional openings are relevant in the
construction of HS from FCs since, as showed in [CFT22], they imply the analogous prop-
erties of efficient verification [CFW14, GVW15] and context hiding [BF11] in the resulting
HS schemes.

Comparison to the state of the art. In Table 4.1 we compare our two main instantiations
of FCs for circuits from pairings (Corollary 4.18.1) and from lattices (Corollary 4.24.2)
to other algebraic functional commitment schemes in the literature. In the first half of
Table 4.1 we describe schemes that appeared prior to this work, none of which supports
arithmetic circuits but only restricted functionalities such as linear maps, semi-sparse
polynomials and constant-degree polynomials. In the second half, we include schemes
that are concurrent [dCP23, WW23b] and subsequent [WW23a, WW24b] to our results
from this chapter [BCFL23]. For completeness, we also include our scheme in Chapter 5,
which improves on the public parameter succinctness of the pairing-based scheme from
(Corollary 4.18.1).

3 Note, when used for a circuit of depth 3 these solutions may have efficiency doubly exponential in 3 since in
general � ≈ 23 .
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FC scheme Functions |pp| |com| |�| AH CH EV

[LRY16] linear maps �ℓ � �ℓH Ø – Ø
[LM19] linear maps �ℓℓH � � Ø – Ø
[LP20] semi-sp. poly �� �ℓH � – – Ø
[ACL+22]† deg-� poly ?(�) ℓ2� ?(�) log ℓ ?(�) log2(ℓℓH) Ø – Ø
[CFT22] deg-� poly �ℓ2�+1 �� 5 �� 5 Ø – Ø

Cor. 4.18.1 arithm. circ. �F5 � �32 Ø Ø Ø
Cor. 4.24.2 † arithm. circ. ?(�)F5 ?(�) logF ?(�) 3 log2 F Ø Ø Ø

[dCP23]† boolean circ. ?(�, 3) ℓ2 ?(�, log ℓ ) ?(�, ℓ , 3) – – –
[WW23b]† boolean circ. ?(�, 3) ℓ2 ?(�, log ℓ ) ?(�, log ℓ , 3) ℓH – – –

[WW23a]† boolean circ. ?(�, 3) ℓ2 ?(�, log ℓ ) ?(�, log ℓ , 3) ℓH – – Ø
[WW24b] arithm. circ. �B5 � � Ø Ø Ø
Theorem 5.8 arithm. circ. �F3 � �32 Ø Ø Ø

Table 4.1: Comparison of algebraic functional commitments for functions Fℓ → FℓH . Schemes with †

are lattice-based, all other schemes are pairing-based. Constants are omitted, e.g., �ℓ means $(�ℓ ) and
?(·) = poly(·) represents some arbitrary polynomial function. For semi-sparse polynomials � ≥ ℓ is a sparsity-
dependent parameter (cf. [LP20]). For constant-degree polynomials � 5 is the degree of the polynomial 5 used
in the opening while � is the maximum degree fixed at setup. For circuits, 3 is the depth of the circuit C used
in the opening, F is its width (note that F ≥ ℓ , ℓH), and B its size (note B ≤ F · 3). AH means ‘additively
homomorphic’; such schemes can be turned into homomorphic signatures following the compiler in [CFT22].
CH means ‘chainable’; such schemes can be used to build a functional commitment for unbounded-depth
circuits, following our compiler in Section 4.5. EV means ‘efficient verification’; such schemes admit sublinear
time verification (in the circuit or function size) after preprocessing.
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Application to Homomorphic Signatures. By applying a recently proposed transfor-
mation [CFT22], our new FCs for circuits yield new HS that support the same class of
functions and succinctness as supported by the FC, advancing the state of the art. Notably,
we obtain:

• The first HS for circuits based on pairings. Previously existing HS based on pairings can
capture at most circuits in NC1 [KNYY19, CFT22] and need a bound on the circuit size.
In contrast, our HS can evaluate circuits of any polynomial depth, achieving virtually
the same capability of the lattice-based HS of [GVW15] that is based on lattices and
supports circuits with bounded number of inputs ℓ and bounded (polynomial) depth 3.
4 Our result shows for the first time that we can build HS for circuits without the need
of algebraic structures, such as lattices, that are notoriously powerful.

• The first HS that do not require an a-priori bound on the depth. The work of Gorbunov, Vaikun-
tanathan and Wichs [GVW15] left open the problem of constructing fully-homomorphic
signatures, i.e., HS that can evaluate any computation in the class P without having to fix
any bound at key generation time. In our new HS we do not need to fix a bound on the
depth. Instead, we need a bound on the width of the circuits at key generation time. Al-
though this result does not fully solve the open problem of realizing fully-homomorphic
signatures, we believe that our schemes make one step ahead in this direction, as dealing
with a bound on the circuit’s depth is more difficult than dealing with a bound on the
width. As evidence for this, we show a variant of our FC scheme (see Section 4.5.4) for
which one can fix a bound ℓmax and support circuits of larger width $(ℓmax) with an
$(1) increase in proof size.

Like the scheme of [GVW15], our HS constructions have efficient (offline/online) ver-
ification and are context-hiding. As a drawback, our HS allow only a limited form of
multi-hop evaluation, that is the ability of computing on already evaluated signatures.
In our case, we can compose computations sequentially (i.e., given a signature � 5 ,H for
y = 5 (x) we can generate one for z = 6(y) = 6( 5 (x))), while [GVW15] supports ar-
bitrary compositions (e.g., given signatures for {y8 = 58(x)}8 , one can generate one for
I = 6( 51(x), . . . , 5=(x))). On the other hand, for circuits with multiple outputs, the size of
our signatures is independent of the output size, whereas in [GVW15] signatures grow
linearly with the number of outputs.

Our Novel Tool: Chainable Functional Commitments. The key novelty that allows us
to overcome the barrier in the state of the art and build the first FCs for circuits is the
introduction and realization of chainable functional commitments (CFC) – a new primitive
of potentially independent interest.

In brief, a CFC is a functional commitment where one can “open” to committed outputs.
More concretely, while a (basic) FC allows proving statements of the form “ 5 (x) = y” for
committed x and publicly known y, a CFC allows generating a proof � 5 that comH is a
4 In their scheme, the signature size grows polynomially with the depth of the evaluated circuit (precisely, as
33 · poly(�))
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commitment to y = 5 (x1 , . . .x<) for vectors x1 , . . .x< , each independently committed
in com1 , . . . , com< . In terms of security, CFCs must satisfy the analogue of evaluation
binding, that is one cannot open the same input commitments (com1 , . . . , com<) to two
distinct output commitments comH ≠ com′H for the same 5 .

Keeping outputs committed is what makes CFCs “chainable”, in the sense that com-
mitted outputs can serve as (committed) inputs for further functional openings. For
instance, using the syntax above, one can compute an opening �6 proving that comI is a
commitment to z = 6(y). This way, the concatenation of comH ,� 5 ,�6 yields a proof that
z = 6( 5 (x1 , . . .x<)).

The introduction and realization of CFCs are in our opinion the main conceptual
and technical contributions of this paper. From a conceptual point of view, the chaining
functionality turns out to be a fundamental feature to tackle the challenge of supporting
a computation as expressive as an arithmetic circuit. Indeed, we show that from a CFC
for quadratic polynomial maps it is possible to construct a (C)FC for arithmetic circuits.
From the technical point of view, we propose new techniques that depart from the ones
of existing FCs for polynomials [ACL+22, CFT22] in that the latter only work when the
output vector is known to the verifier and there is a single input commitment.

Other Contributions. To broaden the instantiations of our constructions and to enable
the evaluation of unbounded-depth circuits, we give two additional results on output-
succinctness and unbounded FCs, which are generic and may be of independent interest.

• In Theorem 4.25, we show that any succinct FC for ℓ -to-1 functions can be transformed
into a ℓ -to-< FC that is fully succinct in the output, i.e., the proof size does not grow
with <.

• In Theorem 4.26, we show that any suitably expressive FC can be boosted into a single-
input chainable FC [BCFL23], which is sufficient to construct FC schemes for unbounded-
depth circuits.

4.2 Technical Overview

We construct our FCs for circuits in two main steps: (1) a generic construction of (C)FC for
circuits from CFCs for quadratic polynomial maps (Section 4.5), and (2) the realization of
these CFCs based on either pairings (Section 4.6) or lattices (Section 4.7). Below we give an
informal overview of these constructions.

4.2.1 (C)FC for Circuits from CFCs for Quadratic Functions

Our first result is a transformation from CFCs for quadratic polynomials to FCs for circuits
that is summarized in the following theorem.

Theorem 4.26 (informal) Let CFC be a chainable functional commitment for quadratic poly-
nomial maps 5 (x1 , . . . ,x<) = y for any number of inputs <, such that each committed input
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vector x8 and the committed output y have length bounded by ℓ . Then, there exist a functional
commitment FC for arithmetic circuits of bounded width ℓ and unbounded depth 3, such that:

- the commitment size of FC is the same as that of CFC;
- if CFC has opening proofs of size B(ℓ , <), then FC has openings of size at most 3 · B(ℓ , 3).

Moreover, if CFC is additively homomorphic and/or efficiently verifiable, so is FC.

Our transform starts from the observation that the gates of an arithmetic circuit5 can
be partitioned into “levels” according to their multiplicative depth, i.e., level ℎ contains
all the gates of multiplicative depth ℎ and level 0 contains the inputs. All the outputs of
level ℎ, denoted by x(ℎ), are computed by a quadratic polynomial map taking inputs from
previous levels < ℎ, and thus the evaluation of a circuit C of width ≤ ℓ and depth 3 can be
described as the sequential evaluation of quadratic polynomial maps 5 (ℎ) :ℳℓ ℎ →ℳℓ

for ℎ = 1 to 3.
The basic idea of our generic FC is that, starting with a commitment com0 to the inputs

x(0), we can open it to y = C(x(0)) in two steps. First, we commit to the outputs of every
level. Second, we use the CFC functional opening functionality to prove that these values
are computed correctly from values committed in previous levels. Slightly more in detail,
at level ℎ we create a commitment comℎ to the outputs x(ℎ) = 5 (ℎ)(x(0) , . . . ,x(ℎ−1)) and
generate a CFC functional opening proof �ℎ to show consistency w.r.t. commitments
com0 , . . . , comℎ . Eventually, this strategy reaches the commitment com3 of the last level
that includes the outputs, which can be opened to y (or kept committed if one wants
to build a CFC for circuits). The final proof � consists of all intermediate proofs and
commitments, � := (�1 , . . . ,�3 , com1 , . . . , com3−1).

Security reduces to the security of the CFC for quadratic functions. To see this, consider
an adversary that breaks FC evaluation binding by coming up with proofs �,�′ that
verify for y ≠ y′ and for the same com0. Then, there must exist some level ℎ such that the
intermediate commitments comℎ ≠ com′

ℎ
differ (where possibly ℎ = 3). If we take ℎ∗ to be

the smallest amongst such ℎ, then we can break evaluation binding of the quadratic CFC
at level ℎ∗.

As one can see, this construction makes our functional opening proofs grow with
the depth of the circuit. However, if the CFC commitments and proofs are short (e.g.,
B(ℓ , <) is constant or logarithmic in the circuit width ℓ ), then the FC proofs keep only such
dependence on the depth.6 In addition, in Section 4.5.4 we describe different strategies to
(a) reduce the proof size for not-so-densely connected circuits (for instance layered circuits),
and (b) overcome the width bound without changing the parameters at the expense of
increased proof size.

5 In our model we assume wlog arithmetic circuits where every gate is a quadratic polynomial of unbounded
fan-in.

6 The CFC functional openings size B(ℓ , 3)may be linear in 3 for “dense” quadratic functions, but this would
contribute at most an additional factor of 3 to the succinctness of FC in the worst case.
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4.2.2 A Framework for CFCs for Quadratic Functions

We next overview our general strategy of construction CFCs for quadratic functions, which
admits pairing- and lattice-based instantiations.

Theorems 4.17 and 4.20 (informal).Assuming the ℓ -HiKer assumption (resp. the Twin-:-'-ISIS
assumption), our pairing-based (resp. lattice-based) CFC construction is a succinct CFC scheme for
quadratic functions over any < vectors of length ≤ ℓ that admits efficient verification, is additively
homomorphic, and whose functional openings can be made zero-knowledge. For arbitrary quadratic
functions, the opening proofs have size O

(
�<2) (resp. O(poly(�) · < · polylog(< · ℓ )))7.

To build our CFCs we devise new commitment and opening techniques that capture a
quadratic polynomial map y = 5 (x1 , . . . ,x<) where each input is committed in com8 , and
the output is committed too in comy. Our two constructions (pairing-based and lattice-
based) of CFCs for quadratic functions have a similar high-level design that we introduce
below.

For the pairing setting we adopt the implicit notation for bilinear groups G1 ,G2 ,G) of
prime order @ by which [x]B denotes the vector of group elements (6G1

B , . . . , 6
G=
B ) ∈ GℓB for

a fixed generator 6B . For the lattice setting, we let ℛ be a cyclotomic ring and @ be a large
enough rational prime. In this overview, we adopt the bracket notation [G] to express the
representation of a given group or ring element without further distinction.

Abstract functionality. To start, we define three (vectors of) commitment keys [α], [β],
and [γ], that live either in Gℓ1 in the pairing setting, or in ℛℓ@ in the lattice setting. A
commitment of type 
 to a vector x ∈ Zℓ@ is computed à la Pedersen, i.e., via an inner
product, as -(
) = [〈x,α〉]. Commitments of type � and � are defined analogously.

In our CFCs the commitments generated by the commit algorithm Com and used by the
functional opening algorithm FuncProve are only those of type 
, whereas commitments of
type � and � are used as auxiliary values in the proofs. In order to create a CFC opening to
a quadratic polynomial, our main tool is a technique realizing the following functionality:

– [(
, �) → �]-Quadratic opening: given < pairs of commitments to < inputs in both keys{
-
(
)
8

= [〈x8 ,α〉], -(�)8 = [〈x8 ,β〉]
}
8=1...<

and a commitment .(�) = [〈y, γ〉], generate a

succinct functional proof �(�)
5

that y = 5 (x1 , . . . ,x<).

Before seeing how we generate this opening, we observe that �(�)
5

does not yet achieve
our goal since it assumes the availability of both type-
 and type-� commitments on the
inputs, and it only allows us to “move” to a type-� commitment of the output, preventing
us from achieving chainability.

We solve both issues by designing two special cases of the functionality above:

7 Following Theorem 2, this gives a proof size of O
(
�33) for our pairing-based FC and

O
(
poly(�) · 32 · polylog(3 · F)

)
for our lattice-based FC for circuits of depth 3 and width F. Never-

theless, the proof size can be reduced by a factor of 3 in both cases, as we show in Table 4.1. We refer to
Sections 4.6 and 4.7 for details.
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– [
→ �]-Identity opening: given a type-
 commitment -(
) = [〈x,α〉] show that a
type-� commitment -(�) commits to the same x, i.e., -(�) = [〈x,β〉];

– [�→ 
]-Identity opening: given a type-� commitment.(�) = [〈y, γ〉] show that a type-

commitment .(
) commits to the same y, i.e., .(
) = [〈y,α〉].

We use the identity opening mechanisms to “close the circle” in such a way to obtain a
quadratic opening mechanism where all inputs and outputs are only type-
 commitments.
To summarize, our CFC FuncProve algorithm consists of the following steps:

(i) compute a type-� commitment-(�)
8

to each input alongwith an [
→ �]-Identity opening
proof that -(�)

8
commits to the same x8 in -(
)8 ;

(ii) compute a type-� commitment .(�) to the result y = 5 (x1 , . . . ,x<) and a [(
, �) → �]-
Quadratic opening proof attesting the validity of y w.r.t. the input commitment pairs
(-(
)

8
, -
(�)
8
);

(iii) finally, use the [�→ 
]-identity opening to ensure that .(
) is a commitment to the same
y in the .(�) computed in (ii).

Our [(", #) → $]-quadratic openingmethod. We use the fact that a quadratic polynomial
map 5 :ℳ=< →ℳℓ can be linearized via appropriately defined vector e and matrices F8
and G8 , 9 such that

y = 5 (x1 , . . . ,x<) = e +
∑
8

F8 · x8 +
∑
8 , 9≥8

G8 , 9 · (x8 ⊗ x9)

where ⊗ denotes the tensor product.
In this overview, we only show how to produce a functional opening for a single

quadratic term, i.e., to show thaty8 , 9 = G8 , 9 ·(x8⊗x9) given input commitments-(
)
8
, -
(�)
8
, -
(
)
9
, -
(�)
9

and output .(�)
8 , 9

. This is the core of our technique since the full opening for 5 is obtained
by doing an additive aggregation of openings for all the terms in the sum.

To open to G8 , 9 , we first ensure that the verifier knows a commitment /8 , 9 to the tensor
product x8 ⊗ x9 , calculated as

/8 , 9 := [〈x8 ⊗ x9 ,α ⊗ β〉].

The way in which the verifier obtains /8, 9 varies in the pairing and lattice constructions.
Then, the prover generates a linear map opening that the vector y8, 9 in the type-� commit-
ment .(�)

8 , 9
is the result of applying G8 , 9 to the vector committed in /8, 9 . We compute this

proof as follows. Denote with G8 , 9 ,: the :-th row of G8 , 9 and with 1
α⊗β the component-wise

inverse of α ⊗ β. Let

Γ8 , 9 =

ℓ∑
:=1

G8 , 9 ,: ·
[

�:
α ⊗ β

]
be an encoding of the matrix G8 , 9 that should be computable by the verifier (who can also
pre-compute Γ8, 9). Then we rely on the fact that

/8 , 9 · Γ8 , 9 = [〈G8, 9 · x8 ⊗ x9︸         ︷︷         ︸
y8 , 9

, γ〉] +
∑

(ℎ,;)≠(ℎ′,;′),:
2ℎ,;,ℎ′,;′,: ·

[

ℎ′�;′


ℎ�;
�:

]
. (4.1)
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Namely, /8, 9 ·Γ8 , 9 can be split into the sum between a non-rational term that actually encodes
the (commitment to the) result [〈y8 , 9 , γ〉], and a linear combination of rational monomials,
which is eventually encoded as part of the opening proof, and whose coefficients can be
efficiently computed given G8, 9 ,x8 and x9 .

For the prover to prove such splitting, and for the verifier to compute the encoding,
we need to include additional elements in the public parameters. In particular, we add:
[α ⊗ β] for computing /8 , 9 ,

[
�:

α⊗β

]
for computing Γ8 , 9 , and

[

ℎ′�;′

ℎ�;

�:
]
for computing the

sum in (4.1). To obtain security, we instantiate the different commitments and verification
checks over pairing groups and lattice rings, whose particularities we describe next.

4.2.3 Pairing-Based CFC

In our pairing-based CFC in Section 4.6, the elements in the public parameters belong to
the groupsG1 andG2, and the input commitment is computed inG1 as

[
-(
)

]
1 = [〈x,α〉]1.

For the verifier to obtain the commitment to the tensor product /8 , 9 , the prover calculates
and sends

[
/8 , 9

]
1 :=

[
〈x8 ⊗ x9 ,α ⊗ β〉

]
1 and

[
-
(2)
8

]
2

:= [〈x8 ,α〉]2, and the verifier checks[
-
(
)
8

]
1
· [1]2

?
= [1]1 ·

[
-
(2)
8

]
2

to test that
[
-
(2)
8

]
2
∈ G2 encodes the same vector of

[
-
(
)
8

]
1
∈ G1, and[

/8 , 9
]

1 · [1]2
?
=

[
-
(�)
9

]
1
·
[
-
(2)
8

]
2

to test the well-formedness of
[
/8 , 9

]
1. To let the prover compute this, we add elements

[α]2 in G2 to the public parameters.
Finally, the prover computes and sends

[
�
(�)
8 , 9

]
1
=

∑
(ℎ,;)≠(ℎ′,;′),: 2ℎ,;,ℎ′,;′,: ·

[

ℎ′�;′

ℎ�;

�:��
]

1
.

This way, the verifier can test equation (4.1) using pairings as[
/8 , 9

]
1 ·

[
Γ8 , 9

]
2

?
=

[
.
(�)
8 , 9

]
1
·
[
��

]
2 +

[
�
(�)
8 , 9

]
1
· [1]2 . (4.2)

Note that we are introducing an additional variable �� in the verification, which is
central to the security of the scheme. More precisely, in our pairing-based CFC we pro-
vide in the public parameters the elements:

[
��

]
2 (to be used in the verification above),{[

�:��
α⊗β

]
2

}
:
(used to compute

[
Γ8 , 9

]
2), and

{[

ℎ′�;′

ℎ�;

�:��
]

1

}
(ℎ,;)≠(ℎ′,;′),:

(to compute the proof[
�
(�)
8 , 9

]
1
). The security of the scheme relies precisely on the fact that the public parameters

do not include any term of the form
[
�:��

]
1 in the group G1.

To see how this relates to the scheme, suppose that one breaks evaluation binding
by finding two proofs

[
�
(�)
8 , 9

]
1
,
[
�̃
(�)
8 , 9

]
1
that open to different commitments

[
.
(�)
8 , 9

]
1
and[

.̃
(�)
8 , 9

]
1
for the same function G8 , 9 . Then, by (4.2), we can compute [*]1 =

[
.̃
(�)
8 , 9

]
1
/
[
.
(�)
8 , 9

]
1

and [+]1 =

[
�
(�)
8 , 9

]
1
/
[
�̃
(�)
8 , 9

]
1
such that ([*]1 , [+]1) is in the linear span of

(
[1]1 ,

[
��

]
1

)
.

However, elements of this form cannot be derived from linear combinations of group
elements in the public parameters. This is captured formally by our HintedKernel (HiKer)
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assumption, which we justify in the generic (bilinear) groupmodel. Our HiKer assumption
can be seen as a “hinted” version of theKerMDHassumptions of [MRV16] (see Section 6.3).8

In terms of succinctness, the functional proof size of our pairing-based CFC is linear in
the density of the quadratic polynomial, that is the number of nonzero quadratic terms
x8x9 , which is in the worst case quadratic on the number < of input commitments. This
is due to the fact that, even if we can compress all proofs

[
�
(�)
8 , 9

]
1
in one, the prover still

needs to provide every
[
/8 , 9

]
1 for 1 ≤ 8 ≤ 9 ≤ <. Fortunately, in our construction of FC for

circuits, we can reduce the proof size of the CFC at each layer from quadratic to linear. We
refer to Corollary 4.18 for further details.

4.2.4 Lattice-Based CFC

In our lattice-based CFC in Section 4.7, we sample commitment keys α,β, γ uniformly
from ℛℓ@ . The public parameters also contain two trapdoored matrices A,B ∈ ℛ�×�

@ and a
vector t ∈ ℛ�

@ , where ℛ is the ring of integers of a cyclotomic field, and �, � are determined
by the trapdoor sampling algorithm. Instead of providing the ring elements α⊗ β (and all
elements that result from evaluating diverse monomials 6 on α,β, γ) as in the pairing-
based construction, we include a short preimage u6 of each ring element such that A ·u6 ≡
t · 6(α,β, γ) mod @, obtained with the help of the trapdoors9.

Given commitments -(
)
8

= 〈α,x8〉, the verifier can easily compute the commitment
to the tensor product /8 , 9 = -

(
)
8
· -(�)

9
= 〈α ⊗ β,x8 ⊗ x9〉 thanks to the ring structure of

ℛ@ . We note that in the scheme, we need to make an additional restriction that both the
vectors x1 , . . . ,x< and the coefficients of the polynomial map 5 are short. This implies
that the coefficients 2ℎ,;,ℎ′,;′,: in equation (4.1) are also short.

With this restriction, we enable the proof of the split using the short preimages of each
ring element 
ℎ′�;′


ℎ�;
�: available in the public parameters. This allows the prover to compute

a short preimage u(�)
8 , 9

for the element /8 , 9 ·Γ8 , 9 −.(�)8 , 9
, which the verifier can efficiently check

by A · u(�)
8 , 9
≡ t ·

(
/8 , 9 · Γ8 , 9 − .(�)8 , 9

)
mod @ (note again that Γ8 , 9 depends on the function and

can be pre-computed), in addition to a norm check on u
(�)
8 , 9

.
In comparison to our pairing-based CFC, here the prover no longer needs to provide

the /8 , 9 elements, but only the -(�)
8

for every 1 ≤ 8 ≤ < such that x8x9 is non-zero for some
9. Thus, the functional opening proof size of our lattice-based CFC is (at most) linear in the
number < of committed vectors. Naively, this results in proofs for our lattice-based FC for
circuits that grow quadratically on the circuit depth. However, in Corollary 4.24 we show
how to reduce this dependency from quadratic to linear for any circuit (even non-layered
ones). We also note that the lattice parameters need to be set as a function of the size ℓ

8 For matrices [A]2 from certain (random) distributions, KerMDH asks the adversary to find a nonzero vector
[z]1 such that Az = 0. In HiKer, the adversary is challenged to find nonzero [I]1 = [D, E]1 such that
D� + E = 0, when given [A]2 =

[
1, �

]
2, but also other group elements, the “hints”, that depend on � and

other random variables.
9 Preimages of some monomials with respect to B are also included in the public parameters, but we omit
them in this overview.
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of the committed vectors, therefore the proof also grows (logarithmically) in the circuit
width.

The security of the scheme essentially relies on the fact that no short preimage for ring
elements �: is available to the prover. We capture this fact via the Twin-:-'-ISIS assumption
(Section 4.7), which extends the :-'-ISIS assumption from [ACL+22]. Essentially, :-'-ISIS
states that even when given short preimages u6 satisfying A · u6 ≡ t · 6(v) mod @ for all 6
in a given set of monomials, it is hard to find a SIS solution (i.e. a short non-zero preimage
u∗) such that A ·u∗ ≡ 0 mod @. Our Twin-:-'-ISIS states that finding a solution (u∗ , v∗) for
A · u∗ +B · v∗ ≡ 0 mod @ is still hard even if we also provide preimages of a strictly different
set of monomials with respect to a second (independent) matrix B.

In Section 3.3.1, we analyse Twin-:-'-ISIS and compare it to :-'-ISIS and the BASIS
assumption from [WW23b]. Although both our Twin-:-'-ISIS and HiKer assumptions are
new and non-standard, we remark that they are well-parametrized assumptions with a
simple winning condition, which differs from that of the FC scheme. As typical in the
lifetime of new cryptographic primitives, we expect that future work can fill this gap.

4.3 Functional Commitments

In this section we give the definition of functional commitments (FC) for generic classes
of functions, by generalizing the one given in [LRY16] for linear functions. For notational
simplicity we omit explicit references to subvectors since they are not needed in this thesis,
although they can be easily added to the definition.

Definition 4.1 (Functional Commitments). Letℳ be some domain and let ℱ ⊆ { 5 :ℳℓ →
ℳℓH} be a family of functions overℳ, with ℓ inputs and ℓH outputs. A functional commitment
scheme (FC) for ℱ consists of a commitment scheme (Setup,Com)10 forℳℓ augmented with two
additional algorithms (FuncProve, FuncVer) with the following syntax:

FuncProve(ck, aux, 5 ) → � on input an auxiliary information aux and a function 5 ∈ ℱ , outputs
a functional opening proof �.

FuncVer(ck, com, 5 , y,�) → 1 ∈ {0, 1} on input a commitment com, a functional opening proof
�, a function 5 ∈ ℱ and a value y ∈ ℳℓH , accepts (1 = 1) or rejects (1 = 0).

Moreover, the algorithms must satisfy the following properties:

Correctness. FC is correct if for any ℓ ∈ N, all ck←$ Setup(1� , 1ℓ ), any 5 :ℳℓ →ℳℓH in the
class ℱ , and any x ∈ ℳℓ , if (com, aux) ← Com(ck,x), then

Pr[FuncVer(ck, com, 5 , 5 (x), FuncProve(ck, aux, 5 )) = 1] = 1.

Succinctness. Let us assume that the admissible functions can be partitioned as ℱ = {ℱ�}�∈K
for some set K , and let BFC : N × K → N be a function. A functional commitment FC for ℱ is
10In Theorem 3.1, we provide a generic definition of commitment schemes that also includes (standard) opening
and verification algorithms Open,Ver. Here, we omit them as they are subsumed by the FC algorithms
FuncProve, FuncVer.
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4. Chainable Functional Commitments for Circuits

said to be BFC(ℓ , �)-succinct if (a) the underlying commitment scheme (Setup,Com) is succinct
(Theorem 3.1), and (b) there exists a polynomial ?(�) = poly(�) such that for any � ∈ K , function
5 :ℳℓ →ℳℓH such that 5 ∈ ℱ�, honestly generated commitment key ck← Setup(1� , 1ℓ ), vector
x ∈ ℳℓ and opening �← FuncProve(ck, aux, 5 ), it holds that |�| ≤ ?(�) · BFC(ℓ , �).

In order to model and compare different constructions, the notion of succinctness
that we introduce is parametric with respect to a function BFC(ℓ , �) that depends on the
input-output length ℓ and some parameter � of the evaluated function. To give some
examples, � could be an integer expressing the depth/size of a circuit (and thus ℱ� are
all circuits of depth/size �), the degree of a polynomial, or the running time of a Turing
machine. Accordingly, K is a set that partitions the class of admissible functions, e.g.,
K = [�] if the admissible functions are all circuits of depth ≤ �, or K = N if one wants to
capture circuits of any depth.

Remark 4.2. In Chapter 7, we express FC succinctness by a function BFC such that |�| ≤
BFC(�, ℓ , ℓH ,

�� 5 ��) and where | 5 | denotes the size of the circuit description of 5 . This is done for
clarity, as we will not need to partition the class of functions ℱ into subclasses ℱ�.

One can also express succinctness asymptotically, such that for any admissible set of parameters,
|�| ≤ poly(�, log ℓ , log ℓH , >(| 5 |)).

The natural security definition of FCs, proposed in [LRY16], is called evaluation binding
and says that a PPT adversary cannot open a commitment to two distinct outputs for the
same function.

Definition 4.3 (Evaluation Binding). For any PPT adversaryA, the following probability is
negl(�):

Pr


FuncVer(ck, com, y, 5 ,�) = 1

∧ FuncVer(ck, com, y′, 5 ,�′) = 1

∧ y ≠ y′

����������
ck← Setup(1� , 1ℓ )

©­­«
com, 5 ,

y, �,

y′, �′

ª®®¬←A(ck)


≤ negl(�).

For simplicity of presentation, in all our security definitions, we omit checking the
domains of the elements returned by the adversary, e.g., that 5 ∈ ℱ and y ∈ ℳℓ etc.

We show that evaluation binding implies the classical binding notion.

Proposition 4.4. Let FC be an FC scheme satisfying evaluation binding. Then FC.Com is a
computationally binding commitment scheme, namely any PPT adversary has probability negl(�)
of finding a tuple (x, A ,x′, A′) such that x ≠ x′ and Com(ck,x; A) = Com(ck,x′; A′).

Proof. The proof is rather simple and works as follows. Consider an adversaryA that re-
turns (x, A ,x′, A′) such that x ≠ x′ and Com(ck,x; A) = Com(ck,x′; A′) with non-negligible
probability. Then we can use it to build an adversary ℬ that returns (com, 5 , y,�, y′,�′)
such that FuncVer(ck, com, 5 , y,�) = FuncVer(ck, com, 5 , y′,�′) = 1 and y ≠ y′. To do so,
ℬ runsA and then looks for a function 5 such that y = 5 (x) ≠ 5 (x′) = y′, and computes
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(com, aux) ← Com(ck,x; A), (com′, aux′) ← Com(ck,x′; A′), � ← FuncProve(ck, aux, 5 ),
�′ ← FuncProve(ck, aux′, 5 ). By the correctness of FC, � and �′ must verify for y and
y′ respectively, and for the same commitment com = com′ (due to the break of binding by
A). Therefore, ℬ’s output is a valid attack against evaluation binding. �

4.3.1 Additional Properties of FCs

Here we define several extra properties of functional commitments that can be useful in
applications.

Efficient Amortized Verification. An FC with this property enables the verifier to pre-
compute a verification key ck 5 associated to the function 5 , with which they can check any
opening for 5 in time asymptotically faster than running 5 .

Definition 4.5 (FC Efficient Verification). A functional commitment admits efficient verification
if there exists a pair of algorithms:

PreFuncVer(ck, 5 ) → ck 5 on input the commitment key ck and a function 5 ∈ ℱ , outputs a
commitment key for the function ck 5 .

EffFuncVer(ck, com, y, ck 5 ,�) → 1 ∈ {0, 1} on input the commitment key ck, a commitment
com, an output y, a functional opening proof �, and a commitment key ck 5 for a function 5 ∈ ℱ ,
accepts (1 = 1) or rejects (1 = 0).

Furthermore, for any ℓ = poly(�), function 5 :ℳℓ →ℳℓH s.t. 5 ∈ ℱ , any honestly generated
commitment key ck ← Setup(1� , 1ℓ ), vector x ∈ ℳℓ , commitment (com, aux) ← Com(ck,x)
and opening �← FuncProve(ck, aux, 5 ), it holds:

• EffFuncVer(PreFuncVer(ck, 5 ), com, y,�) = FuncVer(ck, com, 5 , y,�),

• ck 5 is succinct, i.e.
��ck 5

�� ≤ ?(�) · BFC(ℓ , �), and FC.EffVer(ck, com, y, ck 5 ,�) runs in time
≤ ?(�) · BFC(ℓ , �) + poly(�, ℓH).11

Hiding and Zero Knowledge. An FC is hiding if the commitments produced through
Com are hiding (see Theorem 3.1). For zero-knowledge, the goal is that the openings
produced by FuncProve should not reveal more information about the committed vector
beyond what can be deduced from the output, i.e., that x is such that y = 5 (x). We include
the formal definition, which we take from [CFT22].

Definition 4.6 (Zero-knowledge openings). An FC has perfect (resp. statistical, computational)
zero-knowledge openings if there is a simulator Sim = (SimSetup , SimCom , SimEquiv , SimOpen) such
that

• (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck ← Setup(1� , 1ℓ )} and {ck : (ck, td) ← SimSetup(1� , ℓ )} are identical (resp. statistically,
computationally indistinguishable).

11The term poly(�, <) appears since the EffVer algorithm needs to at least read the output y, that has length ℓH .
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• (ii) for any vector x ∈ ℳℓ , keys (ck, td) ← SimSetup(1� , ℓ ), functions 51 , . . . , 5& ∈ ℱ , and
commitments (com, aux) ← Com(ck,x) and (c̃om, ãux) ← SimCom(ck), the following two
distributions are identical (resp. statistically, computationally indistinguishable):

(c̃om, {SimOpen(td, ãux, c̃om, 59 , 59(x))}&9=1) ≈ (com, {FuncProve(ck, aux, 59)}&9=1)

We state a simple result showing that an FC with hiding commitments (but not nec-
essarily zero-knowledge functional openings) can be converted, via the use of a NIZK
scheme, into one that also achieves zero-knowledge functional openings.

Theorem 4.7. Let FC be an FC scheme that satisfies com-hiding (Definition 3.1), and let Π be
a knowledge-sound NIZK for the NP relation 'FC = {((ck, com, 5 , y);�) : FuncVer(ck, com, 5 ,
y,�) = 1}. Then there exists an FC scheme FC∗ for the same class of functions supported by
FC that has com-hiding and zero-knowledge functional openings. Furthermore, if FC is additive-
homomorphic, so is FC∗; if FC has efficient verification and Π supports '′FC = {(ck 5 , com, y;�) :
EffVer(ck 5 , com, y,�) = 1}, then FC∗ has also efficient verification.

Proof. LetΠ = (Setup,Prove, FuncVer, Sim) be aNIZK for the relation'FC = {((ck, �, 5 , y);�) :
FuncVer(ck, com, 5 , y,�) = 1}. Then, we can construct a FC scheme FC∗ that satisfies com-
hiding and zero knowledge openings as follows:

• FC∗.Setup(1�) runs ck← FC.Setup(1�) and crs← Π.Setup(1�), and outputs (ck, crs).

• FC∗.Com((ck, crs),x; A) directly outputs (com, aux) ← FC.Com(ck,x; A) (note that FC.Com
is com-hiding).

• FC∗.FuncProve((ck, crs), aux, 5 ) runs � ← FC.FuncProve(ck, aux, 5 ) and then outputs
�∗ ← Π.Prove(crs, (ck, com, 5 , y),�).

• FC∗.FuncVer((ck, crs), com, 5 , y,�∗) outputs 1 ← Π.FuncVer(crs, (ck, com, 5 , y),�∗).

Additive homomorphism and efficient verification of FC∗ follow from the respective
properties of FC.

Zero knowledge follows from the zero knowledge property of the NIZK, since we can
construct a simulator FC∗.Sim given the NIZK simulator Π.Sim as follows. FC∗.SimCom ,

FC∗.SimEquiv are the same as their respective FC com-hiding simulators. FC∗.SimSetup runs
both FC.SimSetup and the NIZK simulator Π.SimProve and outputs simulated c̃rs, c̃k and
respective trapdoors. Finally, FC∗.SimOpen runs the NIZK simulator Π.SimProve on the
simulated c̃rs and its trapdoor.

Evaluation binding for FC∗ requires the knowledge soundness of the NIZK. Namely,
given two proofs �∗ ,�∗′ for different outputs y, y′ and the same commitment com, one can
run the NIZK extractor to obtain �,�′ from �∗ ,�∗′. Then, it is possible to make a reduction
to the security (evaluation binding) of FC. �
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4.4 Chainable Functional Commitments

As described in the technical overview, we introduce the notion of Chainable Functional
Commitments (CFC), which is an extension of the FC primitive that allows one to “chain”
multiple openings to different functions. Here, we follow and extend the original syntax
from [BCFL23] to allow each of x1 , . . . ,x< , y to be indexed by a different index set, this is,
to support subvectors as in the definition of commitments (Theorem 3.1).

Definition 4.8 (Chainable Functional Commitments (CFC)). A chainable functional commit-
ment (CFC) for a class of functions ℱ ⊆ { 5 :ℳ<·ℓ →ℳℓ} and index set family J consists of a
commitment scheme (Setup,Com) for J and additionally PPT algorithms (FuncProve, FuncVer)
with the following syntax:

FuncProve(ck, (x8)8∈[<] , 5 ) → �: given vectors x8 ∈ ℳ�8 for 8 ∈ [<] and a function 5 ∈ ℱ
where 5 :

∏
8∈[<]ℳ�8 →ℳ�H , returns a functional opening proof �.

FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) → 1 ∈ {0, 1}: on input commitments (com8)8∈[<] for 8 ∈
[<] to the < inputs and comH to the output, opening proof �, and function 5 ∈ ℱ where
5 :

∏
8∈[<]ℳ�8 →ℳ�H , accepts (1 = 1) or rejects (1 = 0).

A CFC must satisfy the following properties.

Correctness. For �, ℓ , <, ∈ N, �1 , . . . , �< , �H ∈ J , 5 ∈ ℱ where 5 :
∏

8∈[<]ℳ�8 →ℳ�H , and
x8 ∈ ℳ�8 for 8 ∈ [<], it holds that

Pr


FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) = 1

�����������
ck← Setup(1� , 1ℓ )
com8 ← Com(ck, �8 ,x8) ∀8 ∈ [<]
comH ← Com(ck, �H , 5 (x1 , . . . ,x<))
�← FuncProve(ck, (x8)8∈[<] , 5 )


= 1.

Succinctness. We define succinctness for CFCs analogously to succinctness for FCs. For any
admissible set of parameters as before, |�| ≤ ?(�) · BCFC(ℓ , <, �).

As in the case of FCs (Definition 4.1) we define succinctness in a parametric way, and
we are interested in CFC constructions supporting non-trivial functions BCFC(ℓ , <, �) that
are sublinear or constant in ℓ , <. We introduce the CFC security notion below, which is
analogous to Theorem 4.3.

Definition 4.9 (CFC Evaluation Binding). A CFC satisfies evaluation binding if for any PPT
adversaryA,

Pr


FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) = 1

∧ FuncVer(ck, (com8)8∈[<] , com′H , 5 ,�′) = 1

∧ comH ≠ com′H

����������
ck← Setup(1� , 1ℓ )

©­­«
(com8)8∈[<] , 5 ,

comH , �,

com′H , �′

ª®®¬←A(ck)


≤ negl(�).
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As one can notice, the above notion of evaluation binding can only hold in the case
when the output commitments comH are generated deterministically. This is still enough
for using CFCs to construct FCs with hiding commitments to inputs and zero-knowledge
openings (thanks to Theorem 4.7). Looking ahead, evaluation binding for randomized
(e.g. hiding) CFCs may be defined if a “projective space” is embedded in the commitment
key, such as in the projective commitments defined in Chapter 6.

Definition 4.10 (CFC Efficient Verification). A CFC admits efficient verification with prepro-
cessing if there exists a pair of algorithms:

PreFuncVer(ck, 5 ) → ck 5 on input the commitment key ck and a function 5 ∈ ℱ where 5 :∏
8∈[<]ℳ�8 →ℳ�H , outputs a function key ck 5 of size |ck 5 | ≤ ?(�) · BCFC(ℓ , <, �).

EffFuncVer(ck 5 , (com8)8∈[<] , comH ,�) → 1 ∈ {0, 1} on input a function key ck 5 , commitments
(com8)8∈[<] to the < inputs and comH to the output, and an opening proof �, accepts (1 = 1) or
rejects (1 = 0) in time bounded by ?(�) · BCFC(ℓ , <, �)

Furthermore, the following function equivalence holds:

FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) ≡ EffFuncVer(PreFuncVer(ck, 5 ), (com8)8∈[<] , comH ,�).

4.5 FC for Circuits from CFC for Quadratic Polynomials

In this section we introduce a generic construction of a Functional Commitment scheme
for arithmetic circuits of bounded width ℓ , from any Chainable Functional Commitment
for quadratic functions over inputs of length ℓ .

4.5.1 Circuit Model and Notation

Let ℛ be a commutative ring. We consider arithmetic circuits C : ℛℓ → ℛℓ where every
gate is a quadratic polynomial with bounded coefficients. It is not hard to see that such a
model captures the more common model of arithmetic circuits consisting of fan-in-2 gates
that compute either addition or multiplication.

More in detail, we model C as a directed acyclic graph (DAG) where every node is
either an input, an output or a gate, and input (resp. output) nodes have in-degree (resp.
out-degree) 0. We partition the nodes in the DAG defined by C in levels as follows. Level
0 contains all the input nodes. Let the depth of a gate 6 be the length of the longest path
from any input to 6, in the DAG defined by the circuit. Then, for ℎ ≥ 1, we define level ℎ
as the subset of gates of depth ℎ. Note that any gate in level ℎ has at least one input coming
from a gate at level ℎ − 1 (while other inputs may come from gates at any other previous
level 0, . . . , ℎ − 2). The depth of the circuit C , denoted 3C (or simply 3 when clear from the
context), is the number of levels of C . Finally, we assume that the last level 3C also contains
output nodes.12

12This can be assumed without loss of generality. If we have an output G(ℎ)
8

at level ℎ < 3, we can introduce a
linear gate at level 3 that takes G(ℎ)

8
and some arbitrary G(3−1)

9
as input, and outputs G(3)

:
= G
(ℎ)
8
+ 0 · G(3−1)

9
.
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In this model, we define the width of C , denoted by ℓ , as the maximum number of
nodes in any level ℎ = 0 to 3C . Note that the width upper bounds the input length. For
simplicity, we assume without loss of generality circuits with maximal ℓ inputs and ℓ gates
in every level.

When we evaluate C on an input x, we denote the input values by x(0), and the outputs
of the gates in level ℎ by the vector x(ℎ). We note that, for every : ∈ [ℓ ], the output of the
:-th gate in level ℎ can be defined as G(ℎ)

:
= 5
(ℎ)
:
(x(0) , . . . ,x(ℎ−1)) where 5 (ℎ)

:
: ℛℓ ℎ → ℛ is a

quadratic polynomial. We group all these ℓ polynomials 5 (ℎ)1 , . . . , 5
(ℎ)
ℓ

into the quadratic
polynomial map 5 (ℎ) : ℛℓ ℎ → ℛℓ such that x(ℎ) = 5 (ℎ)(x(0) , . . . ,x(ℎ−1)). We denote the
operation that extracts these functions { 5 (ℎ)} from C by ( 5 (1) , . . . , 5 (3)) ← Parse(C).

4.5.2 Quadratic Functions

As we mentioned above, a gate in our circuit model computes a quadratic polynomial.
Thus all the gates at a given level form a vector of ℓ quadratic polynomials that take up to
< = poly(�) vectors and output a single vector. We define this class of functions as

ℱquad = { 5 : ℛℓ< → ℛℓ : 5 = ( 5:):∈[ℓ ] ∧ ∀: ∈ [ℓ ] 5: ∈ ℛ[-(1)1 , . . . , -
(<)
ℓ
]≤2}.

A quadratic polynomial map 5 ∈ ℱquad, 5 : ℛ<= → ℛℓ , such as those representing the
computation done at a given level of a circuit, can be expressed in a compact form. For
5 (x(1) , . . . ,x(<)) = y, we can define 3 matrices F(ℎ) ∈ ℛℓ×ℓ , 3(3 + 1)/2 matrices G(ℎ,ℎ′) ∈
ℛℓ×ℓ2 , and a vector e ∈ Fℓ such that

5 (x(1) , . . . ,x(<)) = e +
∑

ℎ∈S1( 5 )
F(ℎ) · x(ℎ) +

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )

G(ℎ,ℎ′) · (x(ℎ) ⊗ x(ℎ
′)). (4.3)

The sets S1( 5 ) and S⊗2 ( 5 ) are the linear support and the quadratic support of 5 that we
define below; for now S1 = [<], S⊗2 = {(ℎ, ℎ′) ∈ [<] × [<] : ℎ ≤ ℎ′}.13

We note that, in an arbitrary circuit, the function 5 (ℎ) at each level may depend on
values from any previous level, but not necessarily from all of them. To capture such
connectivity precisely, we define the linear support of 5 ∈ ℱquad, denoted S1( 5 ) ⊆ [<], as
the set of indices ℎ where the linear part of 5 is nonzero with respect to any term -

(ℎ)
8

.
Formally,

S1( 5 ) := {ℎ ∈ [<] : F(ℎ) ≠ 0}.

Analogously, we define the quadratic support of 5 , denoted S2( 5 ) ⊆ [<], as the indices ℎ
where 5 is nonzero with respect to any term -

(ℎ)
8
· -(ℎ

′)
9

for one or more ℎ′ ∈ [<]. Formally,

S2( 5 ) := {ℎ ∈ [<] : ∃ℎ′ G(ℎ,ℎ′) ≠ 0}.

We will also express the quadratic support using pairs of indices,

S⊗2 ( 5 ) := {(ℎ, ℎ′) ∈ [<] × [<] : ℎ ≤ ℎ′ ∧G(ℎ,ℎ) ≠ 0}.
13This representation is not unique as x(ℎ) ⊗ x(ℎ

′) contains repeated entries, but this can be solved by agreeing
on appropriately placing zero coefficients.
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We also say ℎ ∈ S2( 5 )whenever (C , ℎ) ∈ S⊗2 ( 5 ) or (ℎ, C) ∈ S⊗2 ( 5 ) for some C ∈ [<]. Finally,
we define the support of 5 as the union of its linear and quadratic supports, namely S( 5 ) =
S1( 5 ) ∪ S2( 5 ). By using the linear and quadratic supports, we can express polynomial
functions in ℱquad as follows:

5 (x(1) , . . . ,x(<)) = e +
∑

ℎ∈S1( 5 )
F(ℎ) · x(ℎ) +

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )

G(ℎ,ℎ′) · (x(ℎ) ⊗ x(ℎ
′)). (4.4)

Consider a circuit C and let ( 5 (1) , . . . , 5 (3)) ← Parse(C). Then every function 5 (ℎ) can
be expressed and computed using only the inputs in S( 5 (ℎ)), namely 5 (ℎ)((x(ℎ′))ℎ′∈S( 5 (ℎ))) =
5 (ℎ)(x(0) , . . . ,x(ℎ−1)).

We call the number of inputs in the support of 5 (ℎ), namely |S( 5 (ℎ))|, the in-degree of
level ℎ. We say that a circuit C has in-degree CC if CC = maxℎ∈[3C ] |S( 5 (ℎ))|. We call C a layered
circuit if it has in-degree 1. Notice that for a layered circuit it holds that x(3) = C(x(0))
where x(ℎ) = 5 (ℎ)(x(ℎ−1)) for all ℎ = 1 to 3.

4.5.3 Our Compiler: from CFC to FC

Classes of circuits. To properly define the succinctness and the functions supported by
our FC construction, we parametrize the circuits according to three parameters, the depth,
the in-degree, and the width. Let ℱ(3,C,F) = {C : ℛℓ → ℛℓ : 3C = 3, CC = C , FC = F}, where
3C ∈ N, CC ≤ 3, FC ≤ F are the depth, in-degree, and width of C , respectively. Then our
FC scheme supports any arithmetic circuit of width at most ℓ , in the model described
above. We denote this class by ℱ= := {ℱ(3,C,F)}3∈N,C≤3,F≤ℓ .

Construction. In Figure 4.1 we present our FC construction for ℱ= . We assume, without
loss of generality, that the auxiliary input aux generated by CFC.Com contains the com-
mitted input x. In the protocol, we retrieve x from aux via a Parse function. Note that the
same construction becomes a CFC for ℱ= if the verifier takes com3 as input and skips the
recomputation of com3 in Figure 4.1.

Our goal in this section is to prove the following theorem.

Theorem 4.11. Let CFC = (Setup,Com, FuncProve, FuncVer) be a chainable functional commit-
ment scheme for the class of functions ℱquad. Then, the scheme FC in Figure 4.1 is an FC for the
class ℱ= of arithmetic circuits C : ℛℓ → ℛℓ of width ≤ ℓ .

Let K be a partitioning of ℱquad such that CFC is B(ℓ , <, �)-succinct for ℱquad = {ℱquad,�}.
Then FC is 3 · (Bmax(ℓ , C)+1)-succinct for the class ℱ= = {ℱ(3,C,F)}3∈N,C≤3,F≤ℓ , where Bmax(ℓ , C) :=
max�∈K B(ℓ , C , �). Moreover, given an additively homomorphic and/or efficiently verifiable CFC,
so is FC.

Proof. Correctness and additive homomorphism of FC follow immediately from the re-
spective properties of CFC.

Succinctness. If CFC is B(ℓ , <, �)-succinct for the class of quadratic polynomials in
ℱquad = {ℱquad,�}, then FC is B′(ℓ , (3, C))-succinct for ℱℓ = {ℱ(3,C,ℓ )} where B′(ℓ , (3, C)) =
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FC.Setup(1� , 1ℓ )
return CFC.Setup(1� , 1ℓ )

FC.Com(ck,x)
return CFC.Com(ck,x)

FC.FuncProve(ck, aux,C)
( 5 (1) , . . . , 5 (3)) ← Parse(C)
x(0) ← Parse(aux)
for ℎ ∈ [3] :

// Evaluate and commit to each level

x(ℎ) ← 5 (ℎ)(x(0) ,x(1) , . . . ,x(ℎ−1))
(comℎ , auxℎ) ← CFC.Com(ck,x(ℎ))
// Compute the opening for the level

�ℎ ← CFC.FuncProve(ck,

(auxℎ′)ℎ′∈S( 5 (ℎ)) , 5 (ℎ))
return (�1 , . . . ,�3 , com1 , . . . , com3−1)

FC.FuncVer(ck, com,C , y,�)
( 5 (1) , . . . , 5 (3)) ← Parse(C)
com0 ← com

(�1 , . . . ,�3 , com1 , . . . , com3−1) ← �

// Recompute commitment to output

com3 ← CFC.Com(ck, y)
for ℎ ∈ [3] :

// Verify all proofs

1ℎ ← CFC.FuncVer(ck,

(comℎ′)ℎ′∈S( 5 (ℎ)) , comℎ , 5
(ℎ) ,�ℎ)

return 11 ∧ · · · ∧ 13

Figure 4.1: Construction of our FC for circuits from a CFC for the class ℱquad. For notational succinctness,
we let Sℎ := S( 5 (ℎ)).

3 · (Bmax(ℓ , C) + 1). Indeed, FC.FuncProve produces 3 − 1 commitments comℎ for ℎ ∈ [3 − 1],
each of them having size bounded by a fixed polynomial ?(�) = poly(�). Besides, it gener-
ates 3 CFC evaluation proofs �ℎ , each of them involving |S( 5 (ℎ))| ≤ C input commitments,
and thus having size ≤ ?(�) · B(ℓ , |S( 5 (ℎ))|, �) ≤ ?(�) · Bmax(ℓ , C). Hence, we can bound the
size of an FC.FuncProve proof by |�| ≤ ?(�) · 3 · (Bmax(ℓ , C) + 1). A particularly relevant case
is that for layered circuits we obtain |�| ≤ ?(�) · 3 · (Bmax(ℓ , 1) + 1).

We obtain better succinctness by using a slightly different, yet general, circuit model.
To keep the presentation of the main scheme simpler, we present this optimization in
Section 4.5.4. The proof size reduction is specific to our CFC construction from pairings
(see Section 4.6.5 for the resulting efficiency).

Efficient verification. If CFC has amortized efficient verification (Definition 4.5), we
can set FC.VerPrep(ck, 5 ) to obtain vkℎ ← CFC.VerPrep(ck, 5 (ℎ)) for ℎ ∈ [3] and output
vk 5 := (vk1 , . . . , vk3). Then, FC.EffVer simply recomputes the commitment to the output
com3 and runs CFC.EffVer for each circuit level. Let )CFC be largest of the running times of
CFC.FuncVer for all CFC instances in the FC construction, and let )Com be the running time
of CFC.Com. Then, the running time of FC.FuncVer is )FC ≤ 3 ·)CFC+)Com. As the running
time of CFC.EffVer is >()CFC), the running time of FC.EffVer is 3 · >()CFC) + )com, which
is >()FC) whenever )Com = >(3 · )CFC). Usually, )com = O(|y|) (and in fact )com = Ω(|y|))
where |y| ≤ ℓ is the length of the committed vector. Hence, in practice FC has amortized
efficient verification unless 3 = O(|C|), a case in which the proof size also becomes very
large.

We remark that for both our pairing-based and lattice-based CFC instances, the running
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time of FC.EffVer is actually bounded by ?(�) · (|y| + |�|) where ?(�) = poly(�), which is
optimal since the verifier at least needs to parse the proof and the output.

Security. In Lemma 4.12, we prove that if CFC is evaluation binding, then FC is evaluation
binding. We remark that in the full version of [BCFL23] we show an analogous result for
knowledge extractability.

Lemma 4.12. If CFC is evaluation binding (Theorem 4.9), then our FC construction for arbitrary
circuits is also evaluation binding.

Proof. Consider an adversaryA who returns a tuple (com,C , y,�, y′,�′) that breaks eval-
uation binding, and parse the proofs as follows

� := (�1 , . . . ,�3 , com1 , . . . , com3−1), �′ := (�′1 , . . . ,�′3 , com′1 , . . . , com′3−1)

Wewill show that, if both proofs � and �′ verify for y and y′ respectively, with y ≠ y′, then
we can construct an adversary ℬ against the evaluation binding of the CFC. We construct
ℬ as follows.

First,ℬ is given a commitment key ck and callsA(ck) to obtain the output (com,C , y,�,
y′,�′). Then, ℬ obtains the commitments to the outputs comH ← Com(ck, y) and comH′ ←
Com(ck, y′).

If comH = comH′ , then ℬ can break the binding property of the commitment (and hence
evaluation binding due to Proposition 4.4), since comH opens to different y ≠ y′.

Hence, let us assume comH ≠ com′H , and denote com0 = com′0 = com. Then, look at both
proofs produced byA and set 1 ≤ ℎ∗ ≤ 3 to be the smallest index such that comℎ∗ ≠ com′

ℎ∗

and comℎ = com′
ℎ
for all ℎ = 0 to ℎ∗ − 1. Notice that such index must exist since, at least, we

have com0 = com′0 and com3 = comH ≠ comH′ = com′
3
.

Then,ℬ breaks evaluation binding ofCFC by outputting ((comℎ)ℎ∈S( 5 (ℎ∗)) , 5 (ℎ
∗) , comℎ∗ ,�ℎ∗ ,

com′
ℎ∗ ,�

′
ℎ∗). �

�

4.5.4 Efficiency Tradeoffs

We describe optimization strategies for our FC construction. Our main goals are to reduce
the proof size in many cases, and to support circuits of larger width than initially specified
at setup time.

A refined circuit model. We introduce a variant of our circuit model that results in a
notable reduction of the proof size of our pairing-based CFC in Section 4.6. The new
circuit model differs from the previous model in that here every quadratic monomial
of each polynomial gate 5 (ℎ)

:
at level ℎ is assumed to take at least one of its inputs from

level ℎ − 1. In particular, the quadratic term of functions 5 (ℎ)
:
(x(0) , . . . ,x(ℎ−1)) is a linear

combination of all products of variables G(ℎ−1)
8
· G(ℎ

′)
9

, ∀8 , 9 ∈ [ℓ ], at levels ℎ − 1 and ℎ′ such
that 0 ≤ ℎ′ ≤ ℎ − 1.
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This circuit model also generalizes the standard arithmetic circuit model with fan-in 2
additive or multiplicative gates. We denote the class of functions in the levels of the new
model by ℱlevel ⊂ ℱquad, which we define as

ℱlevel = { 5 ∈ ℱquad : S⊗2 ( 5 ) ⊆ {(ℎ′, <) ∈ [<] × {<}}}.

Note that we can extend any parametrization ℱquad = {ℱquad,�} to ℱlevel = {ℱlevel,�} by
setting ℱlevel,� := ℱlevel∩ℱquad,�. The main advantage of this model is that for any 5 ∈ ℱlevel,��S⊗2 ( 5 )�� ≤ <, instead of being≤ <2 in themore general case. When switching to this model,
it is sufficient to instantiate our FC construction with a CFC scheme that only supports
quadratic functions in ℱlevel and not all ℱquad.

Reducing proof size. Assume that we want to evaluate a circuit C of width F and depth
3 that is densely interconnected (i.e. the in-degree C = O(3)) when our commitment key ck
supports circuits of width up to ℓ > F. We present an optimization that reduces the proof
size of our FC scheme.

Proposition 4.13. Let CFC be a B(ℓ , <, �)-succinct CFC for ℱlevel = {ℱlevel,�} (resp. for ℱquad =

{ℱquad,�}), and let ℱ= = {ℱ(3,C,F)} be the class of circuits parametrized by depth 3, in-degree
C, and width F ≤ ℓ . Then, we can construct a B′(ℓ , (3, C, F))-succinct FC scheme FC where
B′(ℓ , (3, C, F)) = 3 · (Bmax(ℓ , d3F/ℓe) + 1).

In particular, for circuits of bounded size |C| = 3 · F ≤ ℓ , the proof size is the same as for
layered circuits, namely B′(ℓ , (3, C, F)) = 3 · (Bmax(ℓ , 1) + 1).

Proof. The construction of the optimized FC scheme consists in reshaping the original
input circuit C into an equivalent semi-layered (i.e., C � 3) circuit C ′ of depth 3 and
width bounded by ℓ . The FC scheme is then identical to the scheme in Figure 4.1. In
fact, as FC needs to support circuits of any width F ≤ ℓ , FC.Setup(1� , ℓ ) outputs ck ←
CFC.Setup(1� , 1ℓ ).

Let A = bℓ/Fc. For each level ℎ of C with values x(ℎ), we construct level ℎ in circuit C ′
with values z(ℎ) as described below.

• Let z(0) := x. For ℎ = 1, . . . , A − 1, set z(ℎ) := x(0)||x(1)|| · · · ||x(ℎ) as the concatenation of
variables from previous levels. Then, define the wiring in C ′ by introducing relay gates
between levels, such that x(0) is copied to levels ℎ = 1, . . . , A − 1, x(1) is copied to levels
ℎ = 2, . . . , A − 1, etc. Note that, up to level A, C ′ is the equivalent of C as a layered circuit.

• At level A, set z(A) := x(A). Note that z(A) only depends on inputs at level A − 1 in C ′, since
all x(0) , . . . ,x(A−1) are duplicated at level z(A−1).

• For levels ℎ = A + 1, . . . , 2A − 1, expand again as z(ℎ) := x(A)||x(A+1)|| · · · ||x(ℎ). Note that
values at level ℎ depend only on levels A − 1 and ℎ − 1, as z(A−1) contains all values from
levels 0 to A − 1 in C .

• Repeat the steps above, bootstrapping the circuit at levels 2A, 3A, . . . , 3.
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The functions 5 (1) , . . . , 5 (3) that describe the levels of C ′ are such that level ℎ has in-
degree |S( 5 (ℎ))| = dℎ/Ae. Hence, if the CFC is B(ℓ , <, �)-succinct for ℱlevel = {ℱlevel,�} (resp.
for ℱquad = {ℱquad,�}) then the proof size of the FC scheme for C ′ becomes

|�| =
3−1∑
ℎ=0

B(ℓ , dℎ/Ae, �) + 1 ≤ 3 · (Bmax(ℓ , d3/Ae) + 1).

�

Note that the parameters can be tuned in a per-level basis, allowing for more succinct
proofs in practice or when the initial in-degree is low.

Supporting circuits of arbitrary width. Suppose that the parameters of the FC scheme
are set up for circuits of bounded width ℓ , and that we want to evaluate a circuit C of
width F > ℓ . The following result shows that this is possible at the cost of increasing the
proof size.

Proposition 4.14. Let CFC be a B(ℓ , <, �)-succinct for ℱlevel = {ℱlevel,�} (resp. for ℱquad =

{ℱquad,�}). Let FC be our construction in Figure 4.1 for the class of circuits ℱℓ = {ℱ(3,C,F)} of
bounded width F ≤ ℓ . Then, we can construct an FC scheme F̃C for ℱ = {ℱ(3,C,F)} for any F ∈ N
such that F̃C.Setup(1�) = FC.Setup(1� , ℓ ) where the proof size is |�| ≤ 3 · dF/ℓe · (Bmax(ℓ , C ·
dF/ℓe) + 1).

Proof. We describe F̃C in two steps. First, we introduce a circuit transformation from the
original C to an equivalent C ′ of width ℓ and larger depth. Then, we describe the F̃C.Com,
F̃C.FuncProve and F̃C.FuncVer algorithms. We can construct C ′ as follows:

• Let A = dF/ℓe. For each level x(ℎ), ℎ = 0, . . . , 3 of C , define sub-levels z(ℎ,B) with indices
(ℎ, 1), . . . , (ℎ, A) in C ′ as the natural split of x(ℎ) in A blocks. This is, for B ∈ [A], define
z(ℎ,B) = (G(ℎ)(B−1)ℓ , G

(ℎ)
(B−1)ℓ+1 , . . . , G

(ℎ)
B=−1).

• For each level function 5 (ℎ) : ℛ<F → ℛF corresponding to C , let <′ = < · A and define A
functions 6(ℎ,B) : ℛ<′ℓ → ℛℓ for B ∈ [A] such that 6(ℎ,B)(z(0,1) , . . . , z(ℎ−1,A)) = z(ℎ,B). Note
that these functions can be built from a restriction of 5 (ℎ) to a subset of its outputs.

The commit algorithm F̃C.Com(ck,x)partitions the inputx ∈ ℛF in A blocksx(1) , . . . ,x(A)

of size ℓ as described above, obtains (com(B) , aux(B)) ← Com(ck,x(B)). It outputs ˜com =

(com(1) , . . . , com(A)) and ˜aux = (aux(1) , . . . , aux(A)).
The functional opening algorithm F̃C.FuncProve(ck, ˜aux,C)works as follows:

• ObtainC ′ fromC as presented above, parse (z(0,1) , . . . , z(0,A)) ← Parse( ˜aux), and compute
C ′(z(0,1) , . . . , z(0,A)) and all the intermediate values z(ℎ,B) for ℎ ∈ [3] and B ∈ [A].

• Commit to each z(ℎ,B) as (com(ℎ,B) , aux(ℎ,B)) ← CFC.Com(ck, z(ℎ,B)) for ℎ ∈ [3 − 1] and
B ∈ [A].

• Compute the opening proofs for all functions,

∀ ℎ ∈ [3], B ∈ [A] : �(ℎ,B) ← CFC.FuncProve(ck, (aux(ℎ′,B′))ℎ′∈S( 5 (ℎ)),B′∈[A] , 6(ℎ,B)).
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• Return �̃ = (�(ℎ,B) , com(ℎ,B))ℎ∈[3],B∈[A].

The verification algorithm F̃C.FuncVer(ck, ˜com, 5 , y, �̃) first computes A commitments
to the output z(3,B) ← Com(y(B)) for B ∈ [A] and then verifies all proofs.

Overall, if the CFC is B(ℓ , <, �)-succinct for ℱlevel = {ℱlevel,�} (resp. ℱquad = {ℱquad,�}),
and the original circuit C ∈ ℱ(3,C,F) (i.e., the in-degree of C is bounded by C), then the proof
size of the FC scheme for C ′ becomes

|�| = (3 − 1)A + A ·
3−1∑
ℎ=0

B(ℓ , ℎA, �) ≤ 3A · (Bmax(ℓ , CA) + 1).

�

4.6 Paring-based CFC for Quadratic Functions

We present our construction of a chainable functional commitment for quadratic functions
based on pairings. With our CFC, one can commit to a set of vectors x1 , . . .x< of length ℓ
and then open the commitment to a quadratic function 5 : F<= → Fℓ , for any < = poly(�).
The functional opening proofs of our scheme are quadratic in the number < of input
vectors, but constant in the (possibly padded) length ℓ of each input vector and of the
output. Security is proven in the standard model based on a new falsifiable assumption
that we introduce in Section 4.6.1 and justify in the generic bilinear groupmodel. In Section
4.6.5 we discuss the FCs for circuits that we obtain by applying the generic transform of
Section 4.5 to this pairing-based CFC.

We present our CFC with deterministic commitments and functional openings. We
detail how to make our commitments perfectly com-hiding in Section 4.6.8. We note that
the FCs for circuits obtained from the com-hiding CFC are also com-hiding, and their
functional openings can be made zero-knowledge by applying Theorem 4.7, which we can
efficiently instantiate using, e.g., the Groth-Sahai [GS08] NIZK.

4.6.1 The HiKer assumption

We prove that our construction satisfies evaluation binding under a new falsifiable as-
sumption, called HintedKernel (HiKer), that we justify in the generic group model in The-
orem 4.16.

The name of the assumption comes from its similarity with the KerDH assumption
of [MRV16] (introduced in Section 6.3)which for matrices [A]2 from certain (random)
distributions asks the adversary to find a nonzero vector [z]1 such that Az = 0. In our
case the adversary is challenged to find a nonzero [D, E]1 such that D� + E = 0, when given
[1, �]2 but also other group elements, the “hints”, that depend on � and other random
variables.
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Definition 4.15 (ℓ -HiKerAssumption). Let bgp = (@,G1 ,G2 ,G) , 61 , 62) be a bilinear group set-
ting, let ℓ ∈ N and letG1 ,G2 be the following sets of Laurentmonomials inZ@[(1 , )1 , . . . , (= , )= , �]:

G1(S ,T , �) := {(8 , )8}8∈[ℓ ] ∪ {(8 · )9}8 , 9∈[ℓ ] ∪
{
(8′

(8
· )8 · �

}
8 ,8′∈[ℓ ]
8≠8′

∪
{
(8′ · )9′
(8 · )9

· �
}
8 , 9 ,8′, 9′∈[ℓ ]
(8 , 9)≠(8′, 9′)

G2(S ,T , �) := {�} ∪ {(8}8∈[ℓ ] ∪
{

1
(8
· )8 · �,

1
(8
· �

}
8∈[ℓ ]
∪

{
1
(8
· 1
)9
· �

}
8 , 9∈[ℓ ]

The ℓ -HintedKernel (ℓ -HiKer) assumption holds if for every ℓ = poly(�) and any PPT A, the
following advantage is negligible

Advℓ-�8 4AA (�) = Pr

[
([*]1 , [+]1) ≠ ([1]1 , [1]1)
∧ [*]1 · [�]2 = [+]1 · [1]2

����� ([*]1 , [+]1) ← A
(
bgp,
[G1(σ, τ , �)]1 ,
[G2(σ, τ , �)]2

) ]
where the probability is over the random choices of σ, τ , � andA’s random coins.

Lemma 4.16. The ℓ -HiKer assumption holds in the generic bilinear group model [BBG05].

Proof. First, note that the assumption is equivalent to an assumption without rational
terms. Indeed, for a uniformly sampled �′, consider the assumption above where � =

�′
∏

8 , 9∈[ℓ ] �8�9 .
The intuition is that since the solution (*,+) satisfies the equation [*]1 ·[�]2 = [+]2 ·[1]2

then it must be of the form (*,+) = [D, �D]1 for some D. However, if we look at the input
of the adversary in G1, there is no pair of elements in the linear span of [1, �]1. Note also
that elements in G2 cannot be used by a GGM extractor as bgp is a Type-III bilinear group
setting. A detailed proof follows.

Formally, let A be an adversary that on input (bgp,Ω) outputs two elements
[*]1 , [+]1 ∈ G1 such that [*]1 · [�]2 = [+]1 · [1]2. Then, the GGM extractor must output
two polynomials ?D(S ,T , �), ?E(S ,T , �) with coefficients D0 , D�,8 , D�,8 , D8 , 9 , D8,8′ , D8 , 9 ,8′, 9′

and E0 , E�,8 , E�,8 , E8 , 9 , E8 ,8′ , E8 , 9 ,8′, 9′ such that:

0 = ?D(S ,T , �)� + ?E(S ,T , �) =
D0� + E0 +

∑
8

[(D�,8(8 + D�,8)8)� + E�,8(8 + E�,8)8] +
∑
8 , 9

[
D8 , 9(8)9� + E8 , 9(8)9

]
+

∑
8 ,8′∈[ℓ ]
8≠8′

[
D8 ,8′

(8′

(8
)8�

2 + E8 ,8′
(8′

(8
)8�

]
+

∑
8 , 9 ,8′, 9′∈[ℓ ]
(8 , 9)≠(8′, 9′)

[
D8 , 9 ,8′, 9′

(8′)9′

(8)9
�2 + E8 , 9 ,8′, 9′

(8′)9′

(8)9
�

]
.

Due to the equivalencementioned above, we can effectively do a change of variable� ↦→
��where � =

∏
8 , 9∈[ℓ ] (8)9 and reorganize the expression as a polynomial 20 + 21� + 22�

2

in �, where
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20 =

E0 +
∑
8∈[ℓ ]
(E�,8(8 + E�,8)8) +

∑
8 , 9∈[ℓ ]

E8 , 9(8( 9

 ,
21 =

D0 +
∑
8∈[ℓ ]
(D�,8(8 + D�,8)8) +

∑
8 , 9∈[ℓ ]

D8 , 9(8)9 +
∑
8 ,8′∈[ℓ ]
8≠8′

E8 ,8′
(8′

(8
)8 +

∑
8, 9 ,8′, 9′∈[ℓ ]
(8 , 9)≠(8′, 9′)

E8 , 9 ,8′, 9′
(8′)9′

(8)9

 �,
22 =


∑

8 , 9 ,8′, 9′∈[ℓ ]
(8 , 9)≠(8′, 9′)

D8 , 9 ,8′, 9′
(8′)9′

(8)9
+

∑
8 ,8′∈[ℓ ]
8≠8′

D8 ,8′
(8′

(8
)8

 �
2.

For the above to equal the zero polynomial in �, all terms must cancel. We analyze the
constant, linear, and quadratic terms separately. Note that as all fractions are multiplied
by � =

∏
8 , 9∈[ℓ ] (8)9 , all denominators vanish.

• The constant term does not include cross-terms, so all monomials are linearly indepen-
dent and the expression cancels only if E0 = E�,8 = E�,8 = E8 , 9 = 0.

• The linear term is formed by pairwise distinct monomials which are all independent; no
allowed choice of indices 8 , 9 , 8′, 9′ or 8 , 8′ produces a monomial in the linear span of any
others. In particular, note that variables in ((8′/(8))8 only cancel for 8 = 8′ which is not in
the sum. Also, the denominator of ((8′)9′)/((8)9) only cancels if (8 , 9) = (8′, 9′) which is
also not in the sum.

• For the quadratic term, we reason analogously to conclude that all terms are independent.

It follows that all coefficients of ?D(S ,T , �) and ?E(S ,T , �)must be zero, so ?D = ?E =

0 and the assumption holds.
�

4.6.2 Our CFC Construction

As defined in the previous sectionwe express 5 ∈ ℱquad through a set ofmatrices F(ℎ) ∈ Fℓ×ℓ
and G(ℎ,ℎ′) ∈ Fℓ×ℓ2 , and a vector e ∈ Fℓ such that

5 (x(1) , . . . ,x(<)) = e +
∑

ℎ∈S1( 5 )
F(ℎ) · x(ℎ) +

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )

G(ℎ,ℎ′) · (x(ℎ) ⊗ x(ℎ
′)) (4.5)

For the sake of defining the succinctness of our CFC we parametrize the class ℱquad by
the size of the quadratic support of 5 . Formally, let K = {0, 1, . . . , <(< + 1)/2}. Then we
partition ℱquad as {ℱquad,�}�∈K where each ℱquad,� = { 5 ∈ ℱquad : S⊗2 ( 5 ) = �}. Note that
the parametrization extends naturally to the class ℱlevel as described in Section 4.5. Due to
the definition of ℱlevel, in that case we have at most < partitions, i.e,. ℱlevel = {ℱlevel,�}<�=0.
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Setup(1� , 1ℓ ) Let ℓ ≥ 1 be an integer representing the width of each of the inputs of
the functions to be computed at opening time. Generate a bilinear group description
bgp := (@,G1 ,G2 ,G) , 61 , 62) ← ℬG(1�), and let F := Z@ .

Next, sample random α,β, γ ←$ Fℓ , �
 , �� , �� ←$ F, and output

ck :=

©­­­­­­­­«

[α]1 , [α]2 , [β]1 , [γ]1 , [α ⊗ β]1 ,
[
�


]
2 ,

[
��

]
2 ,

[
��

]
2{[


8
�8′
�8
�


]
1
,
[

8′

8
�8��

]
1

}
8 ,8′∈[ℓ ]
8≠8′

{[

8′� 9′

8� 9

�:��
]

1

}
8 , 9 ,8′, 9′,:∈[ℓ ]
(8 , 9)≠(8′, 9′){[


8�

�8

]
2
,
[
�8��

8

]
2

}
8∈[ℓ ]

,
{[

�:��

8

]
2

}
8 ,:∈[ℓ ]

{
,
[
�:��

8� 9

]
2

}
8 , 9 ,:∈[ℓ ]

ª®®®®®®®®¬
.

Com(ck,x) output com := [〈x,α〉]1 and aux = x.

FuncProve(ck, (aux8)8∈[<] , 5 ) → � Let F(ℎ) ∈ Fℓ×ℓ for ℎ ∈ S1( 5 ), G(ℎ,ℎ′) ∈ Fℓ×ℓ2 for (ℎ, ℎ′) ∈
S⊗2 ( 5 ), and e ∈ Fℓ be the matrices and vectors associated to 5 : F<= → Fℓ . The functional
opening algorithm computes the output y = 5 (x(1) , . . . ,x(<)) and proceeds as follows.

• For every ℎ ∈ S2( 5 ): compute
[
-
(2)
ℎ

]
2

:= [〈x(ℎ) ,α〉]2 ,
[
-
(�)
ℎ

]
1

:= [〈x(ℎ) ,β〉]1, which are
commitments to x(ℎ) under α in G2 and under β in G1, resp.

• For every ℎ ∈ S2( 5 ): compute a linear map opening proof for the identity function, to
show that the input commitment [-ℎ]1 and

[
-
(�)
ℎ

]
1
open to the same value:[

�
(�)
ℎ

]
1

:=
∑
8 ,8′∈[ℓ ]
8≠8′

G
(ℎ)
8′ ·

[

8′


8
�8��

]
1

• For every pair of inputs x(ℎ) ,x(ℎ′) such that (ℎ, ℎ′) ∈ S⊗2 ( 5 ), compute a commitment to
their tensor products as follows:[

/ℎ,ℎ′
]

1 :=
∑
8 , 9∈[ℓ ]

G
(ℎ)
8
G
(ℎ′)
9
· [
8� 9]1 = [〈x(ℎ) ⊗ x(ℎ

′) ,α ⊗ β〉]1.

• Compute a linear map opening proof to show that the vector y satisfies equation
(4.5), with respect to all the inputs x(ℎ) committed in [-ℎ]1 and the inputs x(ℎ) ⊗ x(ℎ

′)

committed in
[
/ℎ,ℎ′

]
1:[

�(�)
]

1 :=
∑

ℎ∈S1( 5 )

∑
8 ,8′,:∈[ℓ ]
8≠8′

�
(ℎ)
:,8
· G(ℎ)

8′ ·
[

8′


8
�:��

]
1

+
∑

(ℎ,ℎ′)∈S⊗2 ( 5 )

∑
8 , 9 ,8′, 9′,:∈[ℓ ]
(8 , 9)≠(8′, 9′)

�
(ℎ,ℎ′)
:,(8 , 9) · G

(ℎ)
8′ G

(ℎ′)
9′ ·

[

8′� 9′


8� 9
�:��

]
1

Note that
[
�(�)

]
1 is in fact a proof for the vector e − t; the linear shift will be addressed

by the verifier in equation (4.11).
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• Commit to the output y under γ by computing
[
.(�)

]
1 := [〈y, γ〉]1. Then, compute

a linear map opening proof for the identity function, to show that
[
.(�)

]
1 and the

commitment to the output comH ← Com(ck, y) (which is under α) open to the same
value: [

�(
)
]

1 :=
∑
8 ,8′∈[ℓ ]
8≠8′

H8′ ·
[

8

�8′

�8
�


]
1

• Return

� :=
({[

-
(2)
ℎ

]
2
,
[
-
(�)
ℎ

]
1
,
[
�
(�)
ℎ

]
1

}
ℎ∈S2( 5 )

,
{[
/ℎ,ℎ′

]
1

}
(ℎ,ℎ′)∈S⊗2 ( 5 )

,
[
.(�)

]
1 ,

[
�(
)

]
1 ,

[
�(�)

]
1

)
.

FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) → 1 ∈ {0, 1} Parse the proof� as above and set [-ℎ]1 :=
comℎ . Output 1 if all the following checks pass and 0 otherwise:

• Verify the consistency of all the commitments. Namely, verify that each [-ℎ]1 and[
-
(2)
ℎ

]
2
are commitments to the same value in G1 and G2:

∀ℎ ∈ S2( 5 ) : [-ℎ]1 · [1]2
?
= [1]1 ·

[
-
(2)
ℎ

]
2

(4.6)

• Verify the linear map commitment proofs
[
�
(�)
ℎ

]
1
that both

[
-
(�)
ℎ

]
1
, [-ℎ]1 commit to

the same value in different sets of parameters:

∀ℎ ∈ S2( 5 ) : [-ℎ]1 ·
∑
8∈[ℓ ]

[
�8��


8

]
2

?
=

[
�
(�)
ℎ

]
1
· [1]2 +

[
-
(�)
ℎ

]
1
· [��]2 (4.7)

• Verify the consistency of the commitments to the tensor products, i.e., verify that[
/ℎ,ℎ′

]
1 is a commitment to x(ℎ) ⊗ x(ℎ

′):

∀(ℎ, ℎ′) ∈ S⊗2 ( 5 ) :
[
/ℎ,ℎ′

]
1 , [1]2

?
=

[
-
(�)
ℎ′

]
1
·
[
-
(2)
ℎ

]
2

(4.8)

• Verify the linear map commitment proof
[
�(
)

]
1 that both comH ,

[
.(�)

]
1 commit to the

same value in different sets of parameters:

[
.(�)

]
1 ·

©­«
∑
8∈[ℓ ]

[

8�

�8

]
2

ª®¬ ?
=

[
�(
)

]
1 · [1]2 + comH · [�
]2 (4.9)

• Verify the linear map commitment proof to check that, intuitively,
[
.(�)

]
1 is a commit-

ment under γ to the output of 5 , computed from the inputs committed in [-ℎ]1 and[
/ℎ,ℎ′

]
1. To this end, compute the encoding of the matrices F(ℎ) for ℎ ∈ S1( 5 ), G(ℎ,ℎ′)

for (ℎ, ℎ′) ∈ S⊗2 ( 5 ) and the vector e as follows. Let [Θ]1 = [〈e, γ〉]1 and

[Φℎ]2 :=
∑
8 ,:∈[ℓ ]

�
(ℎ)
:,8
·
[
�:��

8

]
2
,

[
Γℎ,ℎ′

]
2 :=

∑
8 , 9 ,:∈[ℓ ]

�
(ℎ,ℎ′)
:,(8, 9) ·

[
�:��

8� 9

]
2

(4.10)

and then verify that
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∑
ℎ∈S1( 5 )

[-ℎ]1 · [Φℎ]2 +
∑

(ℎ,ℎ′)∈S⊗2 ( 5 )

[
/ℎ,ℎ′

]
1 ·

[
Γℎ,ℎ′

]
2

?
=

[
�(�)

]
1 · [1]2 +

( [
.(�)

]
1 − [Θ]1

)
· [��]2.

(4.11)

Theorem 4.17. Assume that the ℓ -HiKer assumption holds for a bilinear group setting generated by
ℬG . Then the construction CFC described above is an evaluation binding CFC scheme for the class
ℱquad of quadratic functions over any< = poly(�) vectors of length≤ ℓ , that has efficient verification
and is additively homomorphic. Considering the partitioning of ℱquad = {ℱquad,�}<(<+1)/2

�=0 , CFC
is B(ℓ , <, �)-succinct for B(ℓ , <, �) = (� + 3< + 3). Furthermore, when executed on the class of
functions ℱlevel ⊂ ℱquad introduced in Section 4.5.4 and partitioned as ℱlevel = {ℱlevel,�}<�=0, then
CFC is (4� + 3)-succinct.

4.6.3 Correctness

To prove correctness, consider honestly generated input commitments [-ℎ]1 =
[
〈x(ℎ) ,α〉

]
1

for ℎ ∈ [<] and an honestly generated opening

� :=
({[

-
(2)
ℎ

]
2
,
[
-
(�)
ℎ

]
1
,
[
�
(�)
ℎ

]
1

}
ℎ∈S2( 5 )

, {
[
/ℎ,ℎ′

]
1}(ℎ,ℎ′)∈S⊗2 (f ) ,

[
.(�)

]
1 ,

[
�(
)

]
1 ,

[
�(�)

]
1

)
for a quadratic function 5 represented by the matrices e,F(ℎ) ,G(ℎ,ℎ′) for ℎ ∈ S1( 5 ) and
(ℎ, ℎ′) ∈ S⊗2 ( 5 ).

The correctness of equations (4.6) and (4.8) follows easily by construction since

[-ℎ]1 · [1]2 =
[
〈x(ℎ) ,α〉

]
1 · [1]2 = [1]1 ·

[
〈x(ℎ) ,α〉

]
2 = [1]1 ·

[
-
(2)
ℎ

]
2
,

[
/ℎ,ℎ′

]
1 · [1]2 =

[
〈x(ℎ) ⊗ x(ℎ

′) ,α ⊗ β〉
]

1 · [1]2 =


∑
8 , 9∈[ℓ ]

G
(ℎ)
8
G
(ℎ′)
9


8� 9

1

· [1]2

=
[
〈x(ℎ′) ,β〉

]
1 ·

[
〈x(ℎ) ,α〉

]
2 =

[
-
(�)
ℎ′

]
1
·
[
-
(2)
ℎ

]
2
.

The correctness of equation (4.7) can be seen as follows. Given ℎ ∈ S2( 5 ), we have that

[-ℎ]1 ·
∑
8∈[ℓ ]

[
�8��


8

]
2
=

©­«
∑
8∈[ℓ ]

G
(ℎ)
8


8
ª®¬ · ©­«

∑
8∈[ℓ ]

�8��


8

ª®¬
) =


∑
8 ,8′∈[ℓ ]

G
(ℎ)
8′


8′


8
�8��

)
=


∑
8 ,8′∈[ℓ ]
8≠8′

G
(ℎ)
8′


8′


8
�8�� +

∑
8∈[ℓ ]

G
(ℎ)
8

�8��

) =

[
�
(�)
ℎ

]
1
· [1]2 +

[
-
(�)
ℎ

]
1
· [��]2.
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Similarly, for equation (4.9) we have that

[
.(�)

]
1 ·

∑
8∈[ℓ ]

[

8�

�8

]
2
=

©­«
∑
8∈[ℓ ]

H8�8
ª®¬ · ©­«

∑
8∈[ℓ ]


8�

�8

ª®¬
) =


∑
8 ,8′∈[ℓ ]

H8′
�8′

�8

8�


)
=


∑
8 ,8′∈[ℓ ]
8≠8′

H8′
8
�8′

�8
�
 +

∑
8∈[ℓ ]

H8
8�


) =
[
�(
)

]
1 · [1]2 + comH · [�
]2.

Finally, the correctness of equation (4.11) can be proven in an analogous way. First of
all, we expand the pairing coefficients on the LHS in G) ,

[-ℎ]1 · [Φℎ]2 =


∑
:∈[ℓ ]

©­«
∑
8∈[ℓ ]

�
(ℎ)
:,8
· G(ℎ)

8

ª®¬ �:�� +
ℓ∑

8 ,8′,:=1
8≠8′

�
(ℎ)
:,8
· G(ℎ)

8′ ·

8′


8
�:��

)[
/ℎ,ℎ′

]
1 ·

[
Γℎ,ℎ′

]
2

=


∑
:∈[ℓ ]

©­«
∑
8 , 9∈[ℓ ]

�
(ℎ,ℎ′)
:,(8 , 9) · G

(ℎ)
8
G
(ℎ′)
9

ª®¬ �:�� +
∑

8 , 9 ,8′, 9′,:∈[ℓ ]
(8 , 9)≠(8′, 9′)

�
(ℎ,ℎ′)
:,(8 , 9) · G

(ℎ)
8′ G

(ℎ′)
9′ ·


8′� 9′


8� 9
�:��

)
.

By using the identities above and equation (4.5), we have∑
ℎ∈S1( 5 )

[-ℎ]1 · [Φℎ]2 ·
∑

(ℎ,ℎ′)∈S⊗2 ( 5 )

[
/ℎ,ℎ′

]
1 ·

[
Γℎ,ℎ′

]
2

=


∑

ℎ∈S1( 5 )
8 ,:∈[ℓ ]

�
(ℎ)
:,8
· G(ℎ)

8
· �:�� +

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )
8 , 9 ,:∈[ℓ ]

�
(ℎ,ℎ′)
:,(8, 9) · G

(ℎ)
8
G
(ℎ′)
9
· �:��

)
+

[
�(�)

]
1 · [1]2

=


∑
:∈[ℓ ]
(H: − 4:)�:��

) +
[
�(�)

]
1 · [1]2 =

(
comH − [Θ]1

)
·
[
��

]
2 +

[
�(�)

]
1 · [1]2 .

Note that from the equations above it also follows that CFC is additively homomorphic.

4.6.4 Succinctness

An opening proof � to a given function 5 ∈ ℱquad,� includes
��S⊗2 ( 5 )�� = � commitments

to tensored inputs -̃ℎ,ℎ′, and the triples of elements
{[
-
(2)
ℎ

]
2
,
[
-
(�)
ℎ

]
1
,
[
�
(�)
ℎ

]
1

}
ℎ∈S2( 5 )

,

which are 3 · |S2( 5 )| group elements. Finally, � includes three additional group elements[
.(�)

]
1 ,

[
�(
)

]
1 ,

[
�(�)

]
1. Hence, the proof consists of �+3 · |S2( 5 )|+3 group elements, and

essentially ranges fromO(1) (in fact � has only 3 elements if 5 is a linear function) toO
(
<2)

depending on the quadratic support of 5 . Precisely, considering a fixed polynomial ?(�)
that upper bounds the size of a group element from G1 or G2, our CFC is O(�)-succinct.
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When the CFC is executed on functions from the class ℱlevel = {ℱlevel,�} introduced in
Section 4.5.4 we have that |S2( 5 )| = � ≤ <. In this case a CFC functional opening contains
4� + 3 group elements and our CFC is also O(<)-succinct.

4.6.5 Resulting Instantiations of FC for Circuits

We summarize the FC schemes that result from instantiating our generic construction of
Section 4.5 with our pairing-based CFC.

Corollary 4.18. Assume that the ℓ -HiKer assumption holds forℬG . Then the following statements
hold:

1. There exists an FC scheme for the class ℱ= = {ℱ(3,C,F)} of arithmetic circuits of width F ≤ ℓ that
is $(3 · C)-succinct. In particular, the FC is $(32)-succinct for an arbitrary arithmetic circuit
of multiplicative depth 3, and is $(3)-succinct for a layered arithmetic circuit of multiplicative
depth 3.

2. There exists an FC scheme for the class ℱ= = {ℱ(3,C,F)} of arithmetic circuits of width F ≤ ℓ that
is O

(
32 · F · ℓ−1)-succinct.

3. There exists an FC scheme for the class of arithmetic circuits of size ≤ (, that is O(3)-succinct
where 3 is the multiplicative depth of the circuit.

4. For any F0 ≥ 2, there exists an FC scheme for the class ℱ = {ℱ(3,C,F)} of circuits of arbitrary
width F > F0 that is O

(
3 · C · (F/F0)2

)
-succinct.

Proof. Consider the FC construction in Section 4.5 instantiated with our pairing-based
CFC for quadratic functions. More precisely, we consider arithmetic circuits following the
model described in Section 4.5.4 which allows us to use CFC only with quadratic functions
in ℱlevel. The statements of the corollary can be obtained by combining the following
observations.

1. For arbitrary circuits, note that the in-degree C of the circuit upper bounds the number <
of inputs used in the CFC, and thus an FC proof consists of 3 CFC proofs, which makes
a total of 43C + 33 group elements. $(32)-succinctness for arbitrary arithmetic circuits
follows from the fact that an arbitrary arithmetic circuit of depth 3 may have in-degree
up to 3, while $(3)-succinctness for layered circuits follows from the in-degree being 1
in such circuits.

2. The statement follows from the transformation that we present in Proposition 4.13.

3. To see this statement, let us consider the folklore transformation from arbitrary to layered
arithmetic circuits (which is a special case of the transformation in Proposition 4.13).
If one starts from a circuit C of width ℓ and depth 3, the circuit C ′ resulting from this
transformation has the same depth, but width ≤ ℓ · 3, which is upper bounded by the
circuit size (.

4. The statement follows directly from Proposition 4.14, where F0 is the maximum width
supported by the parameters of the given FC.
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�

4.6.6 Proof of Security

In this section, we prove that our CFC satisfies evaluation binding.
Consider an adversaryA who returns a tuple ((comℎ)ℎ∈[<] , comH , 5 ,�, ˜comH , �̃) that

breaks evaluation binding, set [-ℎ]1 := comℎ , and parse the proofs as follows

� :=
({[

-
(2)
ℎ

]
2
,
[
-
(�)
ℎ

]
1
,
[
�
(�)
ℎ

]
1

}
ℎ∈S2( 5 )

, {
[
/ℎ,ℎ′

]
1}(ℎ,ℎ′)∈S⊗2 ( 5 ) ,

[
.(�)

]
1 ,

[
�(
)

]
1 ,

[
�(�)

]
1

)
�̃ :=

({[
-̃
(2)
ℎ

]
2
,
[
-̃
(�)
ℎ

]
1
,
[
�̃
(�)
ℎ

]
1

}
ℎ∈S2( 5 )

, {/̃ℎ,ℎ′}(ℎ,ℎ′)∈S⊗2 ( 5 ) ,
[
.̃(�)

]
1 ,

[
�̃(
)

]
1 ,

[
�̃(�)

]
1

)
Recall that by definition of evaluation binding, ifA’s attack is successful, both proofs must
verify for the same function 5 , the same input commitments [-ℎ]1 for ℎ ∈ [<], and for
different output commitments comH ≠ ˜comH .

The intuition of the proof is that A can cheat in three possible ways, for which we
define three events �1 , �2 , �3 as follows:

• �1 is the event that
[
.(�)

]
1 =

[
.̃(�)

]
1. As comH ≠ ˜comH , this implies an evaluation binding

break in the linear map commitment proof in equation (4.9).

• �2 is the event that �1 does not happen (i.e.,
[
.(�)

]
1 ≠

[
.̃(�)

]
1) and that

[
-
(�)
ℎ∗

]
1
≠

[
-̃
(�)
ℎ∗

]
1

for some ℎ∗ ∈ S2( 5 ). This means that the proofs
[
�
(�)
ℎ∗

]
1
,
[
�̃
(�)
ℎ∗

]
1
open the commitment

comℎ∗ to two different output commitments for the identity function, which breaks
evaluation binding in equation (4.7).

• �3 is the event that neither �1 nor �2 occur. In this case, we will show that evaluation
binding breaks in equation (4.11).

For any of these events, we will use A’s output to break the ℓ -HiKer assumption if
this is embedded into ck. For this embedding, ℬ makes a guess B̂ ∈ {0, 1} such that B̂ = 0
corresponds to a guess that event �1 occurs while B̂ = 1 corresponds to a guess that either
�2 or �3 will occur. This B̂ is perfectly hidden toA.

Next we describe how to build ℬ out ofA.

Commitment key generation. Let ℬ be an adversary against the ℓ -HiKer assumption. ℬ
uniformly samples a value B̂ ←$ {0, 1} and simulates ck as follows.

Case B̂ = 0. ℬ samples α,β←$ Fℓ , �� , �� ←$ F and implicitly sets γ := σ and �
 := � from
the input of the assumption. It is easy to see that this implicit setting allows ℬ to compute
all the elements in the first row of ck, namely:

[α,β, γ ,α ⊗ β]1 ,
[
α, �
 , �� , ��

]
2

We show how ℬ can simulate the remaining elements in the second and third rows of ck
starting from the inputs from the ℓ -HiKer assumption as follows:
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∀8 , 8′ ∈ [ℓ ], 8 ≠ 8′ : 
8
[
��8′
�8

]
1

=

[

8

�8′

�8
�


]
1


8′

8
�8�� [1]1 =

[

8′


8
�8��

]
1

∀8 , 9 , 8′, 9′, : ∈ [ℓ ] : (8 , 9) ≠ (8′, 9′) : 
8′� 9′

8� 9

�� [�:]1 =

[

8′� 9′


8� 9
�:��

]
1

∀8 ∈ [ℓ ] : 
8
[
�
�8

]
2

=

[

8�

�8

]
2

�8��

8
[1]2 =

[
�8��


8

]
2

∀8 , : ∈ [ℓ ] : ��

8
[�:]2 =

[
�:��

8

]
2

∀8 , 9 , : ∈ [ℓ ] : ��

8� 9
[�:]2 =

[
�:��

8� 9

]
2

As one can notice, in this case of B̂ = 0 we embed in the commitment key only a subset
of the elements of the assumption. This means that the reduction for adversaries causing
event �1 can actually be done based on a weaker version of the assumption which includes
only the subset of the elements that we need for this case.

Case B̂ = 1. ℬ samples �
 , A� , A� ←$ F and γ ←$ Fℓ and implicitly sets α := σ,β := τ , �� :=
A� · �, �� := A� · �. As for the case of B̂ = 0, it is easy to see that this implicit setting allows ℬ
to compute all the elements in the first row of ck, namely [α,β, γ ,α ⊗ β]1 ,

[
α, �
 , �� , ��

]
2.

Next, we show how ℬ can simulate the remaining elements in the second and third
rows of ck starting from the inputs from the ℓ -HiKer assumption as follows:

∀8 , 8′ ∈ [ℓ ], 8 ≠ 8′ : �8′
�8
�
 [�8]1 =

[

8

�8′

�8
�


]
1

A�

[
� �8′

�8
�8

]
1

=

[

8′


8
�8��

]
1

∀8 , 9 , 8′, 9′, : ∈ [ℓ ] : (8 , 9) ≠ (8′, 9′) : A��:
[
�
�8′�9′
�8�9

]
1

=

[

8′� 9′


8� 9
�:��

]
1

∀8 ∈ [ℓ ] : �

�8
[�8]2 =

[

8�

�8

]
2

A�

[
��8
�8

]
2

=

[
�8��


8

]
2

∀8 , : ∈ [ℓ ] : A��:
[
�
�8

]
2

=

[
�:��

8

]
2

∀8 , 9 , : ∈ [ℓ ] : A��:
[

�
�8�9

]
2

=

[
�:��

8� 9

]
2

Execution ofA. Once having generated ck as described above, ℬ runsA(ck), receives
the output ((comℎ)ℎ∈[<] , comH , 5 ,�, ˜comH , �̃) and parses the proofs as before. Notice that
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ck is perfectly distributed as the one generated by Setup and thus the value B̂ is perfectly
hidden toA.

The reduction proceeds differently according to the output produced byA, that we
split in the events �1 , �2 , �3 as defined above.

�1 occurs: If B̂ ≠ 0, then ℬ aborts. Otherwise it proceeds as follows. Recall that in this
case we have that as

[
.(�)

]
1 =

[
.̃(�)

]
1, then

[
�(
)

]
1 ,

[
�̃(
)

]
1 open to different comH , ˜comH .

Therefore, by equation (4.9) we have that[
�(
)

]
1 , [1]2 comH ,

[
�


]
2 =

[
.(�)

]
1 ·

∑
8∈[ℓ ]

[

8�

�8

]
2
=

[
�̃(
)

]
1 · [1]2 ˜comH ·

[
�


]
2

Then, ℬ returns (*,+) such that

[*]1 := ˜comH − comH , [+]1 :=
[
�(
)

]
1 −

[
�̃(
)

]
1 .

If ℬ did not abort, then B̂ = 0. Thus, �
 = � and [*]1 ·
[
�
]

2 = [+]1 · [1]2.

�2 occurs: If B̂ ≠ 1, then ℬ aborts. Otherwise, let ℎ∗ be some index such that
[
-
(�)
ℎ∗

]
1
≠[

-̃
(�)
ℎ∗

]
1
; note that ℎ∗ must exist by definition of event �2. Similarly as before, from equation

(4.7) we have that[
�
(�)
ℎ∗

]
1
, [1]2

[
-
(�)
ℎ∗

]
1
,
[
��

]
2 = -ℎ∗ ,

∑
8∈[ℓ ]

[
�8��


8

]
2
=

[
�̃
(�)
ℎ∗

]
1
, [1]2

[
-̃
(�)
ℎ∗

]
1
,
[
��

]
2 .

Then, ℬ returns ([*]1 , +) such that

[*]1 := A� ·
( [
-̃
(�)
ℎ∗

]
1
−

[
-
(�)
ℎ∗

]
1

)
, [+]1 :=

[
�
(�)
ℎ∗

]
1
−

[
�̃
(�)
ℎ∗

]
1
.

If ℬ did not abort, then B̂ = 1. Thus, �� = A� · � and [*]1 · [�]2 = [+]1 · · · [1]2.
�3 occurs: If B̂ ≠ 1, then ℬ aborts. Otherwise, ℬ proceeds as follows. First, note that since
�1 and �2 did not occur, then

[
.(�)

]
1 =

[
.̃(�)

]
1 and

[
-
(�)
ℎ

]
1
=

[
-̃
(2)
ℎ

]
2
for every ℎ ∈ S2( 5 ).

Also, by equation (4.6) and by the non-degeneracy of the pairing, we have

[-ℎ]1 · [1]2 = [1]1 ·
[
-
(2)
ℎ

]
2
= [1]1 ·

[
-̃
(2)
ℎ

]
2

which implies that
[
-
(2)
ℎ

]
2
=

[
-̃
(2)
ℎ

]
2
.

From the equality above we can use equation (4.8) to also conclude that
[
/ℎ,ℎ′

]
1 = /̃ℎ,ℎ′

for all (ℎ, ℎ′) ∈ S⊗2 ( 5 ). Then, since both proofs satisfy equation (4.11), we have

[
�(�)

]
1 · [1]2

( [
.(�)

]
1 − [Θ]1

)
· [��]2 =

∑
ℎ∈S1( 5 )

[-ℎ]1 , [Φℎ]2 ·
∑

(ℎ,ℎ′)∈S⊗2 ( 5 )

[
/ℎ,ℎ′

]
1 ·

[
Γℎ,ℎ′

]
2

=
[
�̃(�)

]
1 · [1]2

( [
.̃(�)

]
1 − [Θ]1

)
· [��]2.

The reduction returns ([*]1 , [+]1) computed as follows:

[*]1 := A� ·
( [
.̃(�)

]
1 −

[
.(�)

]
1

)
, [+]1 :=

( [
�(�)

]
1 −

[
�̃(�)

]
1

)
.

If ℬ did not abort, then B̂ = 1 and �� = A� · �. Thus, [*]1 · [�]2 = [+]1 · [1]2. Since B̂ is
perfectly hidden ℬ aborts with probability 1/2. Hence, ifA is successful with probability
&, then ℬ breaks the assumption with probability &/2.
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4.6.7 Efficient Verification

Our chainable functional commitment scheme CFC supports amortized efficient verifica-
tion. We define the algorithms PreFuncVer and EffFuncVer below, following Theorem 4.10.

PreFuncVer(ck, 5 ) Parse ck and compute the encodings [Θ]1 , [Φℎ]2 ,
[
Γℎ,ℎ′

]
2 of 5 as done

in the CFC.FuncVer algorithm following equation (4.10). Also, compute the encodings in
equations (4.7) and (4.9),

[
Ψ(�)

]
2 =

∑
8∈[ℓ ]

[
�8��

8

]
2
and

[
Ψ(
)

]
2 =

∑
8∈[ℓ ]

[

8�

�8

]
2
.

Output ck 5 := ({[Θ]1 , [Φℎ]2 ,
[
Γℎ,ℎ′

]
2}(ℎ,ℎ′)∈S⊗2 ( 5 ) ,

[
Ψ(
)

]
2 ,

[
Ψ(�)

]
2).

EffFuncVer(ck 5 , (comℎ)ℎ∈[<] , comH ,�) Parse ck 5 ,� and carry out all the pairing checks in
the FuncVer algorithm, i.e., verify equations (4.6), (4.7), (4.8), (4.9), (4.11).

Following the description of succinctness in Section 4.6.4, given any 5 ∈ ℱquad,� then
EffFuncVer needs to parse a proof that has O(�) group elements. Then, it verifies $ ≤ �

pairing checks in equations (4.6) and (4.7), � checks in equation (4.8), a single check in
equation (4.7), and a single check involving � + $ products in equation (4.11). Assuming
that the running time of each pairing computation is bounded by some polynomial ?(�) =
poly(�), the running time of EffFuncVer is therefore O

(
?(�) · |�|

)
= O

(
?(�) · |�|

)
, which is

essentially optimal.

4.6.8 Commitment Hiding

Our CFC construction can be made perfectly commitment hiding (as in Theorem 3.1)
by adding randomness to the commitment. We describe the transformation C̃FC =

(�Setup, C̃om, �FuncProve, �FuncVer) below.

�Setup(1� , 1ℓ ) Output c̃k← Setup(1� , 1ℓ+1).

C̃om(c̃k,x) Let A ←$ F. Output (com, aux) where com ← Com(c̃k,x) + A · [
8+1]1 and
aux = (x, A).�FuncProve(c̃k, (aux8)8∈[<] , 5 ) Let aux8 = (x(8) , A(8)). OutputFuncProve(c̃k, (aux)8∈[<] , 5 ′)where
5 ′ = ( 5 , 0).�FuncVer(c̃k, (com8)8∈[<] , comH , 5 ,�) Output FuncVer(c̃k, (com8)8∈[<] , comH , 5 ,�).

For the above scheme, it is easy to construct a simulator Sim as follows.

SimSetup(1� , ℓ ) Sampleα←$ Fℓ+1 and generate c̃k as in Setup(1� , ℓ+1), sampling additional
field elements when necessary. Output (c̃k, td)where td = α.

SimCom(td) Sample A ←$ F and output (com, aux) where com = A · [
ℓ+1]1 and aux = (0, A).

SimEquiv(td, com, aux,x) The algorithm uses the field elements in α to find a value A′ ∈ F
such that com = C̃om(x, A′). It simply obtains the solution A′ of the linear equation
〈x,α〉 + 
ℓ+1A

′ = 
ℓ+1A and outputs aux = (x, A′).

72



4.7. Lattice-based CFC for Quadratic Functions

4.7 Lattice-based CFC for Quadratic Functions

In this section, we present a lattice-based construction of a CFC for quadratic functions.
Our construction can be seen as a lattice-analogue of the pairing-based scheme presented
in Section 4.6 obtained via a slight generalisation of the translation technique in [ACL+22].
We recall that a background on lattices is provided in Section 3.3.

4.7.1 Hardness Assumptions

The :-'-ISIS assumption family14 was recently introduced in [ACL+22] as a natural exten-
tion of the standard short integer solution (SIS) assumption and a natural lattice-analogue
of a certain class of pairing-based assumptions. The :-'-ISIS family was accompanied by
a translation technique outlined in [ACL+22] for translating pairing-based schemes and
assumptions to their lattice-analogues.

For instance, a certain :-'-ISIS assumption could be parametrised by a set G of mono-
mials. It states that even when given short preimages u6 satisfying A · u6 = t · 6(v) mod @
for all 6 ∈ G , it is hard to find a short non-zero preimage u∗ satisfying A · u∗ = 0 mod @.

Applying the translation technique in [ACL+22] to the pairing-based assumption (Def-
inition 4.15) which underlies the security of the pairing-based CFC construction, we
encounter an obstacle that there is no translation for the term [�]2 in the challenge relation
4(*, [�]2) = 4(+, [1]2).

To overcome the above obstacle, in the following, we introduce (a special case of) a
generalisation of the :-'-ISIS assumption which we call the Twin-:-'-ISIS assumption. In
a nutshell, instead of a single set G of monomials, we now have two (or in general more)
sets G� and G� of non-overlapping monomials. The Twin-:-'-ISIS assumption states that
even when given short preimages u6 satisfying A · u6 = t · 6(v) mod @ for all 6 ∈ G� and
short preimages w6 satisfying B · u6 = t · 6(v) mod @ for all 6 ∈ G�, it is hard to find a
short non-zero preimage (u∗ ,w∗) satisfying A · u∗ + B ·w∗ = 0 mod @. We stress that the
non-overlapping requirement of G� and G� is crucial, for otherwise (u6 ,−w6) would be a
trivial solution for any 6 ∈ G� ∩ G�. Other than this trivial attack (which is ruled out), the
(failed) attack strategies discussed in [ACL+22] against the :-'-ISIS assumption also fail
against the Twin-:-'-ISIS assumption.15

Definition 4.19 (Twin-:-'-ISIS Assumption). Let �, � ∈ N, @ be a rational prime, �, �∗ ∈ R+,

G� B
{
-8′

-8
· -̄: ,

-8′

-8
· -̌: ,

-̄8′

-̄8
· -:

}
8 ,8′,:∈[ℓ ],8≠8′

∪
{
-8′ · -̌9′
-8 · -̌9

· -̄:

}
8 ,8′, 9 , 9′,:∈[ℓ ]
8≠8′, 9≠9′

,

G� B
{
-: , -̄: , -̌:

}
:∈[ℓ ], and G B G� ∪ G�. Let D be a distribution over ℛ�. Write pp B

(ℛ@ , �, �, =, �, �∗ ,G� ,G� ,D). The :-'-ISISpp assumption states that for any PPT adversaryA
14We use :-'-ISIS to refer to both the ring and module version. In [ACL+22], the module version is given the
name :-"-ISIS.

15A subsequent work by Albrecht, Fenzi, Lapiha and Nguyen [AFLN24] actually proves that there exists a
reduction from the :-'-ISIS assumption to the Twin-:-'-ISIS assumption.
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we have Advk-r-isis
pp,A (�) ≤ negl(�), where Advk-r-isis

pp,A (�) is given by

Pr


A · u∗ + B ·w∗ ≡ 0 mod @

∧ 0 < ‖(u∗ ,w∗)‖ ≤ �∗

��������������

A←$ ℛ�×�
@ mod @; B←$ ℛ�×�

@ mod @

t←$ (ℛ×@ )�; v, v̄, v̌←$ (ℛ×)=

u6 ←$D : A · u6 ≡ t · 6(v, v̄, v̌) mod @, ∀6 ∈ G�
w6 ←$D : B ·w6 ≡ t · 6(v, v̄, v̌) mod @, ∀6 ∈ G�
(u∗ , v∗) ← A

(
A,B, t, v, v̄, v̌,

{
uG� ,wG�

})


.

4.7.2 Construction

In the following, we construct a lattice-based chainable functional commitment scheme.
Our construction is parametrised by a ring ℛ, dimensions �, �, modulus @, norm bound �,
an input length ℓ , and the number of inputs <. Before describing the construction, we first
introduce the following shorthands and notation.

For a quadratic polynomial map 5 : ℛ<= → ℛℓ , we express 5 (x1 , . . . ,x<)

5 (x1 , . . . ,x<) = e +
∑

ℎ∈S1( 5 )
Fℎ · xℎ +

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )

Gℎ,ℎ′ · (xℎ ⊗ xℎ′)

for some Gℎ,ℎ′ ∈ ℛℓ×ℓ
2 , Fℎ ∈ ℛℓ×ℓ , and e ∈ ℛℓ , similarly to previous sections.

Different from the pairing-based construction, our lattice-based construction is addi-
tionally parametrised by a norm bound 
 ∈ R+. We assume that messages x and each
coefficient of any quadratic polynomial map 5 to be opened have norm at most 
, and 5 is
such that for any x1 , . . . ,x< of norm at most 
, it holds that



 5 (x1 , . . . ,x<)


 ≤ 
.

For a vector v ∈ (ℛ×@ )ℓ , denote its component-wise inverse by v† := (E−1
8
)ℓ
8=1. Define

Zv := v† · vT − I = (I8 , 9)8 , 9 where

I8 , 9 =


0 8 = 9

E−1
8
· E 9 8 ≠ 9

.

We are now ready to describe the construction as follows.

Setup(1� , 1ℓ )

• Sample trapdoored matrices (A, tdA), (B, tdB) ← TrapGen(ℛ, 1� , 1� , @, �).
• Sample submodule generator t←$ (ℛ×@ )�.
• Sample commitment key vectors v, v̄, v̌←$ ℛℓ@ .
• Sample a short preimage u6 ← SampPre(tdA , t · 6(v, v̄, v̌) mod @) for each 6 ∈ G�,

where

G� B
{
-8′

-8
· -̄: ,

-8′

-8
· -̌: ,

-̄8′

-̄8
· -:

}
8 ,8′,:∈[ℓ ],8≠8′

∪
{
-8′ · -̌9′
-8 · -̌9

· -̄:

}
8 ,8′, 9 , 9′,:∈[ℓ ]
8≠8′, 9≠9′
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• Sample a short preimage w6 ← SampPre(tdB , t · 6(v, v̄, v̌) mod @) for each 6 ∈ G�,
where

G� B
{
-: , -̄: , -̌:

}
:∈[ℓ ].

• Output ck B
(
A,B, t, v, v̄, v̌, (u6)6∈G� , (w6)6∈G�

)
.

Com(ck,x)

• Compute 2 := 〈v,x〉 mod @.

• Output com = 2 and aux = x.

FuncProve(ck, (auxℎ)ℎ∈[<] , 5 )

• Parse auxℎ as xℎ for all ℎ ∈ [<] and let y := 5 (x1 , . . . ,x<).
• Compute v1 B vec(Zv) ⊗ v̄ and v2 B vec((I + Zv) ⊗ (I + Zv̌) − I) ⊗ v̄.

• Pack the preimages vectors given in the public parameters as columns of the following
matrices:

– U8 such that A · U8 = t · vT
8

mod @ for 8 ∈ [2].
For example, for 8 = 1, the first few columns of the R.H.S. of the equation are of the
form

t · vT
1 = t ·

(
0 E1

E2
· Ē1

E1
E3
· Ē1 . . .

)
.

Notice that each column is either 0 ∈ ℛ�
@ , for which 0 ∈ ℛ� is a trivial preimage, or of

the form t · E8′E8 · Ē: for some 8 , 8′, : ∈ [ℓ ]with 8 ≠ 8′, for which a preimage is given in
ck.

– Ū such that A · Ū = t · vT · Zv̄ mod @.
– Ǔ such that A · Ǔ = t · v̌T · Zv mod @.
– W such that B ·W = t · vT mod @.
– W̄ such that B · W̄ = t · v̄T mod @.
– W̌ such that B · W̌ = t · v̌T mod @.

• Compute u :=
∑
ℎ∈S1( 5 )U1 · vec(xT

ℎ
⊗ Fℎ) +

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )U2 · vec((xT

ℎ
⊗ xT

ℎ′) ⊗ Gℎ,ℎ′).
• Compute w0 := W · y.
• Compute ū0 := Ū · y and w̄0 := W̄ · y.
• Compute ǔℎ := Ǔ · xℎ and w̌ℎ := W̌ · xℎ for ℎ ∈ S2( 5 ).
• Output (u,w0 , ū0 , w̄0 , (ǔℎ , w̌ℎ)ℎ∈S2( 5 )).

FuncVer(ck, (comℎ)ℎ∈[<] , com0 , 5 ,�)

• Define 5̂ (�1 , . . . , �< , �̌1 , . . . , �̌<)

:= v̄T · ©­«
∑

(ℎ,ℎ′)∈S2( 5 )
Gℎ,ℎ′ · (v† ⊗ v̌†) · �ℎ · �̌ℎ′ +

∑
ℎ∈S1( 5 )

Fℎ · v† · �ℎ + eTª®¬ .
• Check if ‖w0‖ ≤ �∗ and ‖w̄0‖ ≤ �∗.
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• For ℎ ∈ [<] \ S2( 5 ), set 2̌ℎ = 0 and check if ‖w̌ℎ‖ ≤ �∗.
• Check if B ·w0 = t · 20 mod @.
• Check if there exists (unique) 2̄0 such that B · w̄0 = t · 2̄0 mod @.
• Check if there exists (unique) 2̌ℎ such that B · w̌ℎ = t · 2̌ℎ mod @ for ℎ ∈ S2( 5 ).
• Check if A · u = t · ( 5̂ (21 , . . . , 2< , 2̌1 , . . . , 2̌<) − 2̄0) mod @ and ‖u‖ ≤ �∗.
• Check if A · ū0 = t · (vT · v̄† · 2̄0 − 20) mod @ and ‖ū0‖ ≤ �∗.
• Check if A · ǔℎ = t · (v̌T · v† · 2ℎ − 2̌ℎ) mod @ and ‖ǔℎ‖ ≤ �∗ for ℎ ∈ S2( 5 ).
• Accept, i.e. output 1, if all checks pass. Otherwise, output 0.

Theorem 4.20. Let � ≥ lhl(ℛ, �, @, �), �∗ ≥ 2·ℓ4 ·<̂2 ·
3 ·�·�3
ℛ, andD = SampD(ℛ, 1� , 1� , @, �),

and assume that the twin-:-'-ISISℛ@ ,�,�,=,�,�∗ ,G� ,G� ,D assumption holds.
Then, the construction CFC described above is an evaluation binding CFC for the class ℱquad

of quadratic functions over any < ≤ <̂ vectors of length ≤ ℓ , has efficient verification, and
is (almost) additively homomorphic. For a function 5 ∈ ℱquad, the proof size of CFC is |�| =
|S2( 5 )| · log2(< · ℓ ) · poly(�), and for the class ℱlevel = {ℱlevel,�}, our CFC is B(ℓ , <, �)-succinct
where B(ℓ , <, �) = � · log2(< · ℓ ). Furthermore, by setting <̂ = �$(1) the CFC supports quadratic
functions over any < = poly(�) vectors and is � · log2(ℓ )-succinct.

In the following sections we prove the theorem.

4.7.3 Correctness

To prove correctness, we first state a claim which abstracts away most of the tedious
calculations.

Claim 4.21. Let 5 (x1 , . . . ,x<) = y. For ℎ ∈ S( 5 ), let 2ℎ = 〈v,xℎ〉 mod @. For ℎ ∈ S2( 5 ),
let 2̌ℎ = 〈v̌,xℎ〉 mod @. For ℎ ∈ [<] \ S2( 5 ), let 2̌ℎ = 0. Let 20 = 〈v, y〉 mod @ and 2̄0 =

〈v̄, y〉 mod @. Let v2 = vec((I + Zv) ⊗ (I + Zv̌) − I) ⊗ v̄ and v1 = vec(Zv) ⊗ v̄. It holds that

5̂ (21 , . . . , 2< , 2̌1 , . . . , 2̌<) − 2̄0 =

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )

vT
2 · vec(xT

ℎ ⊗ xT
ℎ′ ⊗ Gℎ,ℎ′) +

∑
ℎ∈S1( 5 )

vT
1 · vec(xT

ℎ ⊗ Fℎ),

vT · v̄† · 2̄0 − 20 = vT · Zv̄ · y, and
v̌T · v† · 2ℎ − 2̌ℎ = v̌T · Zv · y for all ℎ ∈ S2( 5 ).

Proof. The proof of the claim relies on the following fact about Kronecker products and
vectorization.

Lemma 4.22. Let L, Z be matrices and v,x be vectors of compatible dimensions so that the product
vT · L · Z · x is well-defined. It holds that

vT · L · Z · x = (vec(Z)T ⊗ vT) · vec(xT ⊗ L).

Proof. The proof involves repeated applications of the identities vec(ABC) = (CT⊗A)·vec(B)
and vec(x) = x. We observe the following:

vT · L · Z · x = vT · vec(L · Z · x) = vT · (xT ⊗ L) · vec(Z)
= vec(vT · (xT ⊗ L) · vec(Z)) = (vec(Z)T ⊗ vT) · vec(xT ⊗ L)
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�

We are now ready to prove the claim in the correctness proof. We prove it by directly
calculating

5̂ (21 , . . . , 2< , 2̌1 , . . . , 2̌<)

= v̄T · ©­«
∑

ℎ,ℎ′∈[<]
Gℎ,ℎ′ · (v† ⊗ v̌†) · 2ℎ · 2̌ℎ′ +

∑
8∈[<]

Fℎ · v† · 2ℎ + eª®¬
= v̄T · ©­«

∑
ℎ,ℎ′∈[<]

Gℎ,ℎ′ · (v† ⊗ v̌†) · (vT ⊗ v̌T) · (xℎ ⊗ xℎ′) +
∑
8∈[<]

Fℎ · v† · vT · xℎ + eª®¬
= v̄T · ©­«

∑
ℎ,ℎ′∈[<]

Gℎ,ℎ′ · ((v† · vT) ⊗ (v̌† · v̌T)) · (xℎ ⊗ xℎ′) +
∑
8∈[<]

Fℎ · v† · vT · xℎ + eª®¬
= v̄T · ©­«

∑
ℎ,ℎ′∈[<]

Gℎ,ℎ′ · ((I + Zv) ⊗ (I + Zv̌)) · (xℎ ⊗ xℎ′) +
∑
8∈[<]

Fℎ · (I + Zv) · xℎ + eª®¬
= 2̄0 + v̄T ·

∑
ℎ,ℎ′∈[<]

Gℎ,ℎ′ · ((I + Zv) ⊗ (I + Zv̌) − I) · (xℎ ⊗ xℎ′) + v̄T ·
∑
8∈[<]

Fℎ · Zv · xℎ

= 2̄0 +
∑

ℎ,ℎ′∈[<]
(vec((I + Zv) ⊗ (I + Zv̌) − I)T ⊗ v̄T) · vec(xT

ℎ ⊗ xT
ℎ′ ⊗ Gℎ,ℎ′)

+
∑
8∈[<]
(vec(Zv)T ⊗ v̄T) · vec(xT

ℎ ⊗ Fℎ),

where the last equality follows from Lemma 4.22,

v̄T · v† · vT · y = v̄T · (I + Zv) · y = 2̄0 + v̄T · Zv · y, and
v̌T · v† · vT · y = v̌T · (I + Zv) · y = 2̌0 + v̌T · Zv · y.

�

To continue the correctness proof, recall that

u =

∑
(ℎ,ℎ′)∈S⊗2 ( 5 )

U2 · vec(xT
ℎ ⊗ xT

ℎ′ ⊗ Gℎ,ℎ′) +
∑

ℎ∈S1( 5 )
U1 · vec(xT

ℎ ⊗ Fℎ),

ū0 = Ū · y, and
ǔℎ = Ǔ · xℎ for ℎ ∈ S2( 5 )

are computed using (U2 ,U1 , Ū, Ǔ) satisfying

A · Uℎ = t · vT
ℎ mod @,

A · Ū = t · v̄T · Zv mod @, and

A · Ǔ = t · v̄T · Zv mod @.
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It follows that

A · u = t · ( 5̂ (21 , . . . , 2< , 2̌1 , . . . , 2̌<) − 2̄0) mod @,

A · ū0 = t · (vT · v̄† · 2̄0 − 20) mod @, and

A · ǔℎ = t · (v̌T · v† · 2ℎ − 2̌ℎ) mod @ for all ℎ ∈ S2( 5 ).

It remains to analyse the norms of the preimages. The norms of w0, w̄0, (w̌ℎ)ℎ∈S2( 5 ) are
easy to verify. By the properties discussed in Section 3.3.2, each column in the matrices
U2, U1, Ū, and Ǔ has norm as most �. By our choice of parameters, each entry in Gℎ,ℎ′ , Fℎ ,
x1 , . . . ,x< and y has norm at most 
. It follows that

‖u‖ ≤ ℓ4 · S⊗2 ( 5 ) · 
3 · � · �3
ℛ + ℓ3 · S1( 5 ) · 
2 · � · �2

ℛ < �∗ ,

‖ū‖0 ≤ ℓ · 
 · � · �ℛ < �∗ , and

‖ǔ‖ℎ ≤ ℓ · 
 · � · �ℛ < �∗ ∀ ℎ ∈ S2( 5 ).

Additive homomorphism. As is common in the lattice setting, our construction is almost
additively homomorphic in the following sense: Although the commitment function
x ↦→ 〈v,x〉 mod @ is a linear function, the bounded-norm restriction on messages could
be violated since ‖x‖ ≤ 
 and ‖x′‖ ≤ 
 in general do not imply ‖x + x′‖ ≤ 
. As such,
correctness is only guaranteed after homomorphic evaluation if ‖x + x′‖ ≤ 
.

4.7.4 Succinctness

We measure the succinctness of our construction. A commitment consists of a single ℛ@
element. A functional opening proof consists of 2S2( 5 ) + 3 vectors in ℛ� each of norm at
most �∗. Setting � = lhl(ℛ, �, @, �) = log @ · poly(�) for the guarantees of lattice trapdoor
algorithms, �∗ = 2 · ℓ4 · <2 · 
3 · � · �3

ℛ = ℓ4 · <2 · poly(�) so that correctness holds, and
@ = �∗ · poly(�) to be large enough so that the Twin-:-'-ISIS assumption plausibly holds, a
commitment can be described with log @ · poly(�) = (log ℓ + log<) · poly(�) bits, while an
opening proof for a function 5 ∈ ℱquad can be describedwith (2 |S2( 5 )|+3)·�·log �∗·poly(�) =
|S2( 5 )| · log2(< · ℓ ) · poly(�) bits. Note that for 5 ∈ ℱlevel, then |S2( 5 )| = |S⊗2 ( 5 )| = �. Hence,
our CFC is B(ℓ , <, �)-succinct for the class ℱlevel = {ℱlevel,�}, where B(ℓ , <, �) = � · log2(< ·ℓ ).

Remark 4.23 (Removing the dependence on <). According to the choice of parameters above,
commitments and functional openings have a logarithmic dependence on the number of inputs
< (in addition to the input length ℓ ). More importantly, for correctness to hold, one should fix @
depending on the largest < to be supported. This is a limitation, especially when plugging this
CFC in the FC transformation as there < is in the worst case the depth of the circuit. However,
since the dependence is only logarithmic we can actually set �∗ = 2 · ℓ4 · <̂2 · 
3 · � · �3

ℛ where
<̂ = �$(1) is superpolynomial in the security parameter, in such a way that correctness holds for
any < = poly(�). This change makes @ = �$(1) (a choice that does not affect the plausibility of the
assumption according to the analysis of [ACL+22]) and makes the CFC scheme � · log2(ℓ )-succinct.
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4.7.5 Resulting Instantiations of FC for Circuits

As in the previous section, we summarize the FC schemes that result from instantiating
our generic construction of Section 4.5 with our lattice-based CFC.

Corollary 4.24. Assume that all the conditions of Theorem 4.20 are satisfied. Then the following
statements hold:

1. There exists an FC scheme for the class ℱ= = {ℱ(3,C,F)} of arithmetic circuits of width F bounded
by ≤ ℓ and in-degree bounded by ≤ Cmax that is $(3 · log2(Cmax · ℓ ))-succinct.

2. Using the choice of parameters of Remark 4.23, there exists an FC scheme for ℱ= = {ℱ(3,C,F)} of
width F ≤ ℓ that is O(3)-succinct.

3. For any F0 ≥ 2, there exists an FC scheme for the class ℱ = {ℱ(3,C,F)} of circuits of arbitrary
width F > F0 that is O

(
3 · (F/F0)2

)
-succinct.

Case (1) follows by observing that in the FC construction from CFCs the number of
CFC inputs is bounded by the in-degree of the admissible circuits. In case (1) we fix a
concrete < = Cmax in the choice of @ = �∗ · poly(�)while in points (2)–(3) we consider the
parameters choice of Remark 4.23 that let us support any in-degree C = poly(�).

As opposed to our pairing-based construction, the linear dependency on the depth
does not follow from a black-box application of our FC from CFC construction. In fact,
Theorem 4.11 gives a proof size of O

(
3 · C · log2(Cmax · ℓ )

)
. We can supress the C factor by

noticing that, for each circuit layer ℎ, the same vectors (ǔℎ , w̌ℎ) are included in the openings
at every layer ℎ′ such that ℎ ∈ S2( 5 (ℎ

′)).
The result follows by including them only once in the FC opening proof.
We observe that the resulting lattice-based FC schemes yield shorter proofs (with

respect to circuit depth) than their pairing-based counterparts. This feature can be seen as
a natural consequence of the additional capability to perform computations over encrypted
(in this case, committed) data that lattices provide. Indeed, in our pairing-based construc-
tion, the prover needs to provide O(3 · C) commitments

[
-ℎ,ℎ′

]
1 to the tensor product of

every pair of layers in the circuit. This is avoided in our lattice-based scheme, as the verifier
can multiply commitments �ℎ · �̌ℎ′ by herself.

4.7.6 Proof of Security

Suppose there exists a PPT adversary A against evaluation binding of the CFC con-
struction, we construct a PPT algorithm ℬ for the Twin-:-'-ISIS problem as follows.
Given a Twin-:-'-ISIS instance ck, ℬ passes ck to A. The adversary A returns input
commitments (2ℎ)ℎ∈[<], a quadratic function 5 , two output commitments 20 and 2′0, and
two functional opening proofs � and �′, where � = (u,w0 , ū0 , w̄0 , (ǔℎ , w̌ℎ)ℎ∈S( 5 )) and
�′ = (u′,w′0 , ū′0 , w̄′0 , (ǔ′ℎ , w̌

′
ℎ
)ℎ∈S2( 5 )). By our assumption onA, with non-negligible prob-
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ability, � (and analogously �′) satisfies

A · u = t · ( 5̂ (21 , . . . , 2< , 2̌1 , . . . , 2̌<) − 2̄0) mod @,

A · ū0 = t · (vT · v̄† · 2̄0 − 20) mod @, and

A · ǔℎ = t · (v̌T · v† · 2ℎ − 2̌ℎ) mod @ for all ℎ ∈ S2( 5 ),

where B · w̄0 = t · 2̄0 mod @ and B · w̌ℎ = t · 2̌ℎ mod @.
For any ℎ ∈ S2( 5 ), suppose w̌ℎ ≠ w̌′

ℎ
, then from the third equation (ǔℎ − ǔ′ℎ , w̌ℎ − w̌′ℎ)

would be a non-zero vector of norm at most 2�∗ satisfying A · (ǔℎ − ǔ′ℎ) + B · (w̌ℎ − w̌′ℎ) =
0 mod @, contradicting the twin-:-'-ISIS assumption. We therefore have w̌ℎ = w̌′

ℎ
and

hence 2̌ℎ = 2̌′
ℎ
for all ℎ ∈ S2( 5 ).

Next, suppose w̄0 ≠ w̄′0, then from the first equation (u − u′, w̄0 − w̄′0) would be a
non-zero vector of norm at most 2�∗ satisfying A · (u − u′) + B · (w̄0 − w̄′0) = 0 mod @,
contradicting the twin-:-'-ISIS assumption. We therefore have w̄0 = w̄′0 and hence 2̄0 = 2̄′0.

Finally, suppose w0 ≠ w′0, then from the second equation (ū0 − ū′0 ,w0 −w′0) would be
a non-zero vector of norm at most 2�∗ satisfying A · (ū0 − ū′0) + B · (w0 −w′0) = 0 mod @,
contradicting the twin-:-'-ISIS assumption. We therefore havew0 = w′0 and hence 20 = 2′0,
meaning thatA cannot be a successful adversary against evaluation binding.

4.7.7 Efficient Verification

Our CFC construction also supports amortized efficient verification. We observe that in
our construction the FuncVer algorithm can be split into an offline preprocessing step and
an online verification step:

• PreFuncVer(ck, 5 ): Compute the polynomials 5̂ , īd, and ǐd, output ck 5 B (A,B, t, 5̂ , īd, ǐd).

• EffFuncVer(vk 5 , (comℎ)ℎ∈[<] , com0 ,�): Perform all the checks described in FuncVer.

Clearly, the runtime of EffFuncVer is (S⊗2 ( 5 ) + S1( 5 )) · log @ · poly ≤ <2 · log(< · ℓ ) · poly(�),
which is logarithmic in ℓ .

4.7.8 Commitment Hiding

Commitment hiding can be achieved by extending the dimension of the input vector and
dedicating some entries for commitment randomness. We outline such a transformation
in the following.

First, we modify the setup so that the vectors v, v̄, v̌ are now sampled from ℛℓ+�@ . The
sets G� and G� of monomials are adjusted accordingly. To commit to x ∈ ℛℓ , sample

a uniformly random vector r ←$ ℛ� with ‖r‖ ≤ 
, and compute 2 B

〈
v,

(
x

r

)〉
mod @.

Opening and verifying are almost identical as in the base scheme, except that 5 is treated
as a polynomial on (x1 , r1 , . . . ,x< , r<) but with zero coefficients for all terms involving
any entry of (r1 , . . . , r<). It can be verified that the modified scheme retains correctness
and evaluation binding. For � ≥ lhl(ℛ, �, @, �), which we anyway need for correctness,
commitment hiding is immediate from the leftover hash lemma.
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To make the verification more friendly to zero-knowledge arguments, we need to make
one more minor change to the scheme: The opening algorithm additionally includes
the commitments (2̄0 , (2̌ℎ)ℎ∈S2( 5 )) in an opening proof. This makes the verification NIZK-
friendly, since it boils down to proving the following SIS relations in zero-knowledge:
There exists (u,w0 , ū0 , w̄0 , (ǔℎ , w̌ℎ)ℎ∈S2( 5 )) ∈ (ℛ�)2S2( 5 )+3 such that

A · u = t · ( 5̂ (21 , . . . , 2< , 2̌1 , . . . , 2̌<) − 2̄0) mod @ ∧ ‖u‖ ≤ �∗

A · ū0 = t · (vT · v̄† · 2̄0 − 20) mod @ ∧ ‖ū0‖ ≤ �∗

A · ǔℎ = t · (v̌T · v† · 2ℎ − 2̌ℎ) mod @ ∧ ‖ǔℎ‖ ≤ �∗ ∀ ℎ ∈ S2( 5 )
B ·w0 = t · 20 mod @ ∧ ‖w0‖ ≤ �∗

B · w̄0 = t · 2̄0 mod @ ∧ ‖w̄0‖ ≤ �∗

B · w̌ℎ = t · 2̌ℎ mod @ ∧ ‖w̌ℎ‖ ≤ �∗ ∀ ℎ ∈ S2( 5 ).

By slightly adjusting the parameters of the :-'-ISIS assumption, the scheme remains
evaluation binding even if the NIZK argument can only guarantee that the norm of the
witness is bounded by some �∗∗ > �∗ (although the prover has a witness of norm bounded
by �∗). This allows to use efficient NIZK (e.g. [Lyu09]) for proving SIS relations with relaxed
soundness.

4.8 Generic Transformations for Functional Commitments

We introduce two transformations that allow one to boost the properties of functional
commitment schemes. These results appeared in [ABF24] and will be used in Chapter 7 to
construct succinct multi-key homomorphic signature schemes.

4.8.1 From Succinct to Compact FC

Succinctness is defined with respect to both the input length ℓ and the output length ℓH –
which we name input-succinctness and output-succinctness. Some FC constructions in the
literature, such as [dCP23, WW23b] are nevertheless not output-succinct. To address this
generically, we introduce a result that allows one to obtain output-succinctness from any
FC. The same transformation applies to (multi-key) homomorphic signatures as those in
Chapter 7 (the adaptation is straightforward and omitted here).

Theorem 4.25. Let FC be an evaluation binding FC for ℓ -to-1 functions in the class ℱ . Let ℱ ′ be
the class of functions where each 5 :ℳℓ →ℳℓH in ℱ ′ is such that each of its ℓH projections is a
function in ℱ . Let � :ℳℓH →ℳℓ with ℓ = poly(�) be a collision resistant hash function. Then,
for a suitably expressive ℱ , there exists an evaluation binding FC′ for the class ℱ ′.

Proof. The idea is to execute FC on the composed function 5� := � � 5 : ℳℓ → ℳℓ

in order to generate an opening for each of the ℓ output values of 5� . The verifier who
knows the output y ∈ ℳℓH runs the FC verification with the function 5� and the output
�(y). Precisely, since we assume that FC supports only ℓ -to-1 functions, we consider
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an instantiation for ℓ -to-ℓ functions obtained by running the opening and verification
algorithms ℓ times, for the functions { 5�,8}8=1..ℓH that return the 8-th output bit of 5� . As
one can see, the size of the opening proof of this construction is ℓ · |�| where |�| is the size
of an opening in FC.

For this transformation to be correct we need the FC scheme to be sufficiently expressive
in order to support the functions � � 5 , which may be in a class of functions larger than
ℱ . For example, for FCs that support circuits of bounded depth one needs to increase the
bound by 3�(ℓH) (i.e., the depth of � on inputs of length ℓH). Technically, we need that
each projection 5�,9 , for 9 = 1 to ℓ , is in the class ℱ supported by FC.

The security of this transformation relies on the evaluation binding of FC and the
collision resistance of �. A proof sketch follows. Consider any adversary breaking eval-
uation binding of FC′. Recall that this means that we have two valid openings for y and
y′ ≠ y. Then there are two possible cases: �(y) = �(y′) or not. In the former case we can
break collision resistance of �. In the second case, there is at least an index 9 such that
�(y)9 ≠ �(y′)9 and there are two valid proofs for these values w.r.t. the same function
5�,9 . This case can be reduced to the evaluation binding of FC. �

An interesting special case. Interestingly, the idea of this transformation can be applied
even to very limited FCs, such as ones for linear maps, by means of linear hash functions
such as Ajtai’s. In turn, this method can be applied to existing functional commitments
from lattices [dCP23, WW23b, WW23a] to obtain output-succinctness efficiently.

Let FC be an FC for ℓ -to-1 linear forms over a ringZ@ . Precisely, letℱ be a set of functions
ℱ = { 5 : Zℓ@ → Z

ℓH
@ }where outputs are small integers bounded (in absolute value) by some

� < @. Consider Ajtai’s hash function �A : ZℓH → Zℓ@ defined by �A(y) := A · y mod @

for A ∈ ZℓH×ℓ@ , which is collision-resistant for vectors of small norm. For any 5 ∈ ℱ define
5� := �A � 5 , i.e., 5�(x) := A · 5 (x). Notice that 5� : Zℓ@ → Zℓ@ is a linear map. Thus, we
can run FC for linear forms ℓ times, one for every output.

4.8.2 From FCs to Chainable FCs

Next, we present a generic result that allows one to construct a chainable functional
commitment from any (suitably expressive) FC.16 The idea is simple: for a committed
x, instead of opening to y = 5 (x) we open to comH = FC.Com(ck, 5 (x)), which can be
expressed as comH = 5 ′(x) for a function 5 ′ = 6 � 5 (i.e., the sequential composition
of 5 followed by 6), where 6(·) is the circuit that computes the commitment algorithm
FC.Com(ck, · ).

We remark that, by applying the generic CFC-to-FC transformation in Theorem 4.26
for the special case of layered circuits, this result boosts any FC for bounded-depth circuits
into a FC′ for unbounded-depth circuits, albeit the proof size of FC′ grows linearly with the
circuit depth.

16Precisely, we can build a CFC supporting a single input commitment; this is however sufficient for many
applications, such as the composable MKHS in Chapter 7.
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Theorem 4.26. Let FC be a functional commitment scheme for a class of circuits ℱ and whose
commitment algorithm FC.Com can be computed by a circuit 6 ∈ ℱ . Then there exists a CFC
scheme CFC for the class of circuits ℱ ′ = { 5 : 6 � 5 ∈ ℱ }.

Proof. To obtain a chainable FC scheme CFC from an FC scheme FC, we define CFC as
follows:

• CFC.Setup(1� , 1ℓ ) = FC.Setup(1� , 1ℓ )

• CFC.Com(ck,x) = FC.Com(ck,x)

• CFC.FuncProve(ck, aux, 5 ) = FC.FuncProve(ck, aux, 6 � 5 )

• CFC.FuncVer(ck, comG , comH , 5 ,�) = FC.FuncVer(ck, comG , comH , 6 � 5 ,�).

Correctness is immediate by construction and by the definition of the class ℱ ′.
For evaluation binding, assume by contradiction that an adversaryA outputs a tuple

(comG , 5 , comH ,�, com′H ,�′) that breaks the evaluation binding of CFC. Then, by construc-
tion, the tuple (comG , 6 � 5 , comH ,�, com′H ,�′) breaks the evaluation binding of FC.

Let 6 ∈ ℱ�6 and 5 ∈ ℱ� 5 . Then, the CFC scheme has succinctness parametrized by
BCFC(ℓ , ℓH , � 5 ) = BFC(ℓ , ℓH , �6� 5 ), which by succinctness ofFC is= poly(log ℓ , log ℓH , >(

��6 � 5 ��)).
To argue that this yields succinctness, i.e., BCFC(ℓ , ℓH , � 5 ) = poly(log ℓ , log ℓH , >(

�� 5 ��)), we need
that

��6�� = >(
�� 5 ��). Concretely, for the sake of existing FCs it can be enough to assume that 6

is a circuit of depth polylog(ℓ ). �
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5

Pairing-based Functional Commitments
with Shorter Parameters

In this chapter, we introduce a pairing-based construction of chainable functional commit-
ments for circuits which has a shorter commitment key than the constructions in Chapter 4.
The results are based on the article “Pairing-based Chainable Functional Commitments for
Circuits, Revisited” [BFL25b], which is in submission at the time of writing.

The chapter is structured as follows. In Section 5.1, we summarize the main contri-
butions, followed by a technical overview in Section 5.2. In Section 5.3, we introduce the
pairing-based assumptions that the security of our construction relies on, as well as a
building block called type chaining proofs. Finally, in Section 5.4 we introduce our main
constructions of chainable functional commitments.

5.1 Contributions

We continue the study of functional commitments for circuits that we initiated in Chapter 4.
Our main contribution is an algebraic pairing-based chainable functional commitment
for quadratic functions F<·ℓ → Fℓ with the following characteristics. First, our CFC has
constant-sized O(�) commitments and proofs of size O

(
�<2) , similarly to the pairing-

based construction from Chapter 4. In particular, for functions that take as an input a single
vector of size ℓ , proofs are also of size O(�). Second, it has public parameters that are of
size O

(
�ℓ3) where ℓ is the input size. Third, it is additively homomorphic and supports

efficient verification with pre-processing. The security of the scheme relies on three newly
introduced pairing-based assumptions that can be seen as kernel assumptions with hints
in the spirit of the HiKer assumption (Theorem 4.15).

Our scheme is seamlessly compatible with all the generic trade-offs and the transfor-
mations from Section 4.5. In particular, this yields an algebraic pairing-based (chainable)
functional commitment for unbounded-depth 3 circuits of bounded width F, where the
public parameters grow as O

(
�F3) and the proof size scales as O

(
�32) . For a detailed

comparison to the state of the art, we recall Table 4.1. Essentially, the construction has the
same asymptotic costs as the pairing-based construction from Chapter 4 does, except that
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the size of the public parameters is reduced from quintic to cubic on the circuit width. This
is a clear improvement on our previous scheme that presents no additional drawbacks.
Notably, the public parameter size is the same as in the scheme by Catalano, Fiore and
Tucker for the specific case of quadratic polynomials [CFT22] – however, their scheme is
not chainable and cannot be compiled into an FC for circuits. We also remark that the
compiler from FCs to homomorphic signatures from [CFT22] naturally yields an alge-
braic homomorphic signature scheme for unbounded-depth circuits with smaller public
parameters than the state-of-the-art.

In Section 5.2, we introduce a technical overview of how our CFC construction works,
but we anticipate two features of special interest below.

• The return of the power basis. Several previous works [LRY16, LM19, CFT22] built func-
tional commitments for restricted classes of functions using the so-called power basis for
group elements. In the power basis, also known as monomial basis, the commitment key
includes group elements of the form [
], [
2], . . . , [
ℓ ] for some random 
←$ F. Then,
commitments are computed as com =

∑ℓ
8=1 G8 · [
8]. The advantage of the power basis is

that one can generally obtain more succinct commitment keys than in the multilinear
basis, where the commitment key encodes uncorrelated terms [
1], [
2], . . . , [
=] such
that 
8 ←$ F. However, whether one could obtain a chainable scheme from a power
basis was unclear. In our scheme, we revisit the power basis approach and overcome this
challenge by introducing a series of commit-and-prove gadgets for switching between
different types of commitments, i.e., in different power basis. We call these gadgets type
chaining proofs.

• Building FCs from type chaining proofs. Our construction is built in a black-box way
following a modular abstraction which relies on (a) several commitment algorithms in
different power basis, and (b) linear and quadratic type chaining proofs between them.
This abstraction provides a general blueprint for constructing functional commitment
schemes. In particular, it is possible to observe the constructions in Chapter 4 from the
lens of this abstraction.

A natural question is whether our techniques in the power basis can be extended to
the setting of the FC for circuits with fully-succinct proofs from [WW24b], with the goal
of reducing the (quintic on the circuit size) public parameters of that scheme. The main
challenge seems to be on embedding projective spaces into the power basis. We discuss
projective spaces in Chapter 6, but we do not address this issue and leave it as an open
question.

5.2 Technical Overview

Our CFC for quadratic functions from pairings is built modularly on top of a family of com-
mitment schemes. We rely on three types of commitments on different basis ([2], [2̂], [3])
and three different type chaining proof systems Πpow ,Πquad ,Πeq that prove different rela-
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tions between these commitments. We depict them in Figure 5.1. In this technical overview,
we describe all of these components of our construction and how they fit together.

5.2.1 A Family of Commitment Schemes in a Power Basis

Our starting point for our CFC construction from pairings is a commitment scheme which,
as opposed to previous constructions of chainable functional commitments [BCFL23,
WW24b], is based on a power monomial basis instead of a multilinear basis. Given a
bilinear group (G1 ,G2 ,G)) over a base field F, we define our primary basis as a set of
ℓ elements {[
8]1}ℓ8=1. Then, given a vector x = (G1 , . . . , Gℓ ) ∈ Fℓ , we commit to x as
com = [2]1 =

∑ℓ
8=1 G8[
8]1. This corresponds to the left node [2]1 of the diagram in

Figure 5.1.
Besides this primary commitment scheme, we introduce two additional commitment

algorithms that allow us to commit to vectors in different monomial basis. The power com-
mitment algorithmallows us to commit to a vectorx in a power basis [2̂]1 =

∑ℓ
8=1 G8[
ℓ (8−1)]1.

Note that this basis is a monomial basis also based on powers of 
, but it is not the same
as the primary basis, as the exponents are “spaced out” by a factor of ℓ . Looking ahead, if
we pair a primary commitment to x with a (G2 version of a) power commitment to x′, we
obtain a commitment to the tensor product x⊗x′ in the natural 
-power basis in the target
group, namely [2]1 · [2̂]2 =

[∑ℓ
8, 9=1 G8G

′
9

ℓ (9−1)+8

]
)
. The alternate commitment algorithm

allows us to commit to a vector y in a different monomial basis as [3]1 =
∑ℓ
8=1 H8[�8]1. We

will use alternate commitments to place the outputs of quadratic relations evaluated on
the primary commitment.

We remark that all of our commitments are deterministic.

5.2.2 Building a CFC

Chainability implies that our CFC must be able to prove relations between committed
values in the same monomial basis. This is, given a commitment comG =

∑ℓ
8=1 G8[
8]1, our

goal is to make a proof that comG opens to comH =
∑ℓ
8=1 H8[
8]1 under 5 , where y = 5 (x).

We achieve this by using a combination of three proof systems that we call type chaining
proof systems, as they allow for switching between bases while proving relations between
them. Each of these proof systems requires us to include additional cross-terms in the
commitment key. Their security property is evaluation binding in the same sense of CFC,
meaning that it is hard to open the same input commitment comG to two different output
commitments comH and com′H under the same function 5 . These proof systems are as
follows:

• The first proof system Πpow is a basis change proof that proves equality between a primary
commitment [2]1 =

∑ℓ
8=1 G8[
8]1 and a power commitment [2̂]1 =

∑ℓ
8=1 G8[
ℓ (8−1)]1.

• The second proof system Πquad is a quadratic relation proof that proves quadratic relations
between a pair of primary and power commitments ([2]1 , [2̂]1) to x, and an alternate
commitment [3]1 =

∑ℓ
8=1 H8[�8]1.
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primary power alternate

[2]1

[2H]1

([2]1 , [2̂]1) [3]1
Πpow Πquad

Πeq

Figure 5.1: Representation of the different proof systems that conform our CFC.

• The third proof system Πeq is again a basis change proof that proves equality between an
alternate commitment [3]1 =

∑ℓ
8=1 H8[�8]1 and a primary commitment [2]1 =

∑ℓ
8=1 H8[
8]1.

We can now combine the three proof systems to build a CFC for quadratic functions,
following the steps in Figure 5.1. Given an input x and its (primary) commitment [2]1 and
a function 5 such that y = 5 (x), the prover does as follows:

• Commit to x in the power basis, obtaining [2̂]1.

• Commit to y using the alternate commitment scheme, obtaining [3]1.

• Prove the equality between [2]1 and a power commitment [2̂]1 using Πpow.

• Prove that ([2]1 , [2̂]1) and [3]1 are related by the quadratic function 5 using Πquad.

• Prove the equality between [3]1 and a primary commitment [2H]1 to y using Πeq.

To verify the proof, given [2]1 and a commitment [2H]1 to y, the verifier checks all the
proofs. Security (evaluation binding) follows from the evaluation binding of each of the
proof systems. As all the functional encodings can be easily pre-computed, the CFC admits
efficient verification.

In the technical sections, we describe how to extend this approach to evaluate 5 on
multiple inputs (and multiple input commitments). We also remark that our type chaining
proof abstraction perfectly captures what occurs in both of our constructions in Chapter 4,
providing a cleaner framework for the results from [BCFL23].

5.2.3 Type Chaining Proof Systems

To conclude this overview, we describe the main intuition behind each of the three type
chaining proof systems that we introduced above.

Power Basis Type Chaining. To switch between basis while proving equality, the idea is to
ask the prover to provide, as a proof, a third commitment to a random linear combination of
both basis. This is, define [C8]1 = �[
8]1 + �[
ℓ (8−1)]1 for 8 ∈ [ℓ ], where �, � ∈ F are random
scalars. Then, the prover generates a proof �pow =

∑ℓ
8=1 G8[C8]. The verifier can easily check

the relation by checking the following equation, where correctness is straightforward to
verify.

[�pow]1 = �[2]1 + �[2̂]1.
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However, this approach is only sound if the prover does not know the coefficients �, �

in advance. To make this idea work in the non-interactive case, we leverage the pairing.
We publish the terms [C8]1 = [�
8 + �
ℓ (8−1)]1 in the commitment key, as well as [�]2 , [�]2
(note that these are G2 elements). Then, the verifier checks

[�pow]1 · [1]2 = [2]1[�]2 + [2̂]1[�]2.

The security (evaluation binding) of the proof system relies on the fact that we never
give out �, � in G1 in the ck. The only G1 terms where these coefficients appear are the
[�
8 + �
ℓ (8−1)]1 terms, where they are properly masked by the linear combination.

The security of the proof system relies on a kernel-with-hints assumption, in a similar
flavour as the HiKer assumption from [BCFL23], that we justify with a proof in the generic
group model. The assumption says that it is hard to find two G1 elements in the kernel of
the linear subspace defined by (�, 1), even in the presence of hints (additional terms in the
commitment key). More precisely, the adversary wins if it outputs non-zero ([*]1 , [+]1)
such that [*]1 · [1]2 = [+]1 · [�]2.

Quadratic Type Chaining. For a quadratic function 5 : Fℓ → Fℓ , we express 5 as

H: = 5:(x) =
ℓ∑

8 , 9=1
58, 9 ,:G8G 9 .

Which can also be seen as a linear function on the tensor product x⊗ x. As we anticipated,
pairing 2 and 2̂ results in a commitment to the tensor product in the target group, [2]1 ·[2̂]2 =[∑ℓ

8, 9=1 G8G
′
9

ℓ (9−1)+8

]
)
. Then, we ask the prover to provide a commitment to the tensor

product [2̃]1 =
∑ℓ
8, 9=1 G8G 9[
ℓ (9−1)+8]1 to x⊗x, whose correctness we can verify (in the target

group) with the help of the primary and power commitments.
The next goal is to create an encoding of 5 and a proof that map H: to the :-th power

of � in [3]. For this, we require that the encoding of 5 satisfies the following relation:

2̃ · 5 = ©­«
∑
8 , 9=1

G8G 9

ℓ (9−1)+8ª®¬ · 5 =

∑
8 , 9=1

58 , 9 ,:G8G 9

ℓ2+1�: + )

where ) are cross terms that will appear in a proof � and which, crucially, do not contain
the 
ℓ2+1 term. To achieve this, we encode the 8 , 9-th coefficient of 5 in the opposite order to
how it appears in the commitment to the tensor product, such that they add up to ℓ2 + 1.
This leads us to the following encoding of 5 :

[ 5 ]2 ←
ℓ∑

8 , 9 ,:=1
58 , 9 ,:[�:
ℓ

2+1−8−ℓ (9−1)]2

By encoding all the cross-terms in a proof � 5 , the verification equation looks as follows:

[2̃]1 · [ 5 ]2 = [� 5 ]1 · [1]2 + [3]1 · [
ℓ
2+1]2.

For the proof system to be sound, we need to ensure that the 
ℓ
2+1 term is not included

in the proof � 5 . We do so by never including the G1 term [
ℓ2+1]1 in the commitment
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key. The resulting assumption is a variant of a @-type assumption where all powers of 

are given in both groups, except for the ℓ2 + 1 power in G1. We leave the details for the
technical section, where we also generalize the approach to multiple inputs and include a
degree check on the output commitment.

Equality Basis Type Chaining. Finally, this system is constructed almost identically as
Πpow, by asking the prover to provide a commitment to a random linear combination of
both basis. We omit the details here as they are similar to the previous proof system.

5.3 Preliminaries

5.3.1 Pairing-based Assumptions

In this section, we introduce three pairing-based assumptions that we require to prove the
security of our construction in Section 5.4. In particular, assumption 1 is required by the
proof system Πpow, Assumption 2 is required by the proof system Πquad, and Assumption
3 is required by the proof system Πeq. The three assumptions are closely related, as all of
them are variants of a @-type assumption where the goal is to find a linear combination of
elements in a kernel that is only given in G2. Besides stating them, we prove that all of
them hold in the generic bilinear group model.

Definition 5.1 (Assumption 1). Let bgp = (@,G1 ,G2 ,G) , [1]1 , [1]2) be a bilinear group setting
and let ℓ ∈ N. We say that Assumption 2 holds for bgp on set Sℓ if for any PPT adversaryA, there
exists a negligible function negl(�) such that,

Pr

[
[*]1 · [1]2 = [+]1 · [�]2

∧ ([*]1 , [+]1) ≠ ([0]1 , [0]1)

����� 
, �, �←$ F
([*]1 , [+]1) ← A(bgp,Sℓ (
, �, �))

]
= negl(�).

Where

Sℓ (
, �, �) =
{
{[
8]1 , [
8]2}2ℓ

2+1
8=1

8≠ℓ2+1
, [
ℓ2+1]2 ,

{
[�
ℓ (8−1) + �
8]1

}ℓ
8=1 , [�]2 , [�]2

}
and the probability is taken over the choice of 
, �, � and the adversaryA’s random coins.

Lemma 5.2. Assumption 1 is sound in the generic bilinear group model.

Proof. Intuitively, any adversary against the assumption should find a solution of the form
(*,+) = (�D, D), this is, in the linear span of (�, 1). As � only appears in G1 when it is
randomized by �, which is also never given in the clear in G1, there is no pair of elements
in such space.

Formally, let A(Sℓ (
, �, �)) be an adversary against Assumption 1, which given ck
returns a winning tuple ([*]1 , [+]1). Then, the GGM extractor outputs two corresponding
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polynomials D(-), E(-) ∈ F[-] given by

D(-, �, �) = D0 +
2ℓ2+1∑
8=1

8≠ℓ2+1

D
(1)
8
- 8 +

ℓ∑
8=1

D
(2)
8
(-ℓ (8−1)� + - 8�),

E(-, �, �) = E0 +
2ℓ2+1∑
8=1

8≠ℓ2+1

E
(1)
8
- 8 +

ℓ∑
8=1

E
(2)
8
(-ℓ (8−1)� + - 8�),

such that D(-, �, �) = E(-, �, �) · �. Expanding on this identity, we have that

D0+
2ℓ2+1∑
8=1

8≠ℓ2+1

D
(1)
8
- 8+

ℓ∑
8=1

D
(2)
8
(-ℓ (8−1)�+- 8�) = E0�+

2ℓ2+1∑
8=1

8≠ℓ2+1

E
(1)
8
- 8�+

ℓ∑
8=1

E
(2)
8
(-ℓ (8−1)�2+- 8��).

As there are no monomials of degree 0 in � in E(-, �, �), we immediately derive that
D(-, �, �) = 0, since all D0 , D

(1)
8
, D
(2)
8

appear as coefficients of some monomial of degree 0.
Therefore, it also holds that E(-, �, �) = D(-, �, �) · � = 0. �

Definition 5.3 (Assumption 2). Let bgp = (@,G1 ,G2 ,G) , [1]1 , [1]2) be a bilinear group setting
and let ℓ ∈ N. We say that Assumption 1 holds for bgp on set Sℓ if for any PPT adversaryA, there
exists a negligible function negl(�) such that,

Pr


[*]1 · [1]2 = [+]1 · [
ℓ

2+1]2
∧ [+]1 · [
2ℓ2+1]2 = [,]1 · [1]2
∧ [+]1 ≠ [0]1

����� 
←$ F
([*]1 , [+]1 , [,]1) ← A(bgp,Sℓ (
))

 = negl(�).

Where Sℓ (
) =
{{
[
8]1 , [
8]2

}2ℓ2+1
8=1,8≠ℓ2+1 , [


ℓ2+1]2
}
, and the probability is taken over the

choice of 
 and the adversaryA’s random coins.

Lemma 5.4. Assumption 2 is sound in the generic bilinear group model.

Proof. The intuition is that, since [+]1 · [
2ℓ2+1]2 = [,]1 · [1]2 and 
2ℓ2+1 is the highest
power of 
 available, then + cannot contain any powers of 
 (in other words, it must be a
constant term on the 
-basis). Then, as [*]1 · [1]2 = [+]1 · [
ℓ

2+1]2 and + is constant in 
,
then* must contain a power 
ℓ2+1, which is never given in G1.

Formally, letA(Sℓ (
)) be an adversary against Assumption 1, which given ck returns
a winning tuple ([*]1 , [+]1 , [,]1). Then, the GGM extractor outputs three corresponding
polynomials D(-), E(-), F(-) ∈ F[-] given by

D(-) =
2ℓ2+1∑
8=0

8≠ℓ2+1

D8-
8 , E(-) =

2ℓ2+1∑
8=0

8≠ℓ2+1

E8-
8 , F(-) =

2ℓ2+1∑
8=0

8≠ℓ2+1

F8-
8 .

Moreover, D, E, F must satisfy the following system of equations:{
D(-) = E(-) · -ℓ2+1

E(-) · -2ℓ2+1 = F(-)
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Expanding the second equation implies that

2ℓ2+1∑
8=0

8≠ℓ2+1

E8-
2ℓ2+1+8 =

2ℓ2+1∑
8=0

8≠ℓ2+1

F8-
8 ,

which yields E8 = 0 for every 8 ≥ 1. Hence, E(-) = E0 is a constant polynomial. Then, we
can rewrite the first equation as

2ℓ2+1∑
8=0

8≠ℓ2+1

D8-
8 = E0 · -ℓ

2+1.

which implies that both D(-) = E(-) = 0.
�

Definition 5.5 (Assumption 3). Let bgp = (@,G1 ,G2 ,G) , [1]1 , [1]2) be a bilinear group setting
and let ℓ ∈ N. We say that Assumption 3 holds for bgp on set Sℓ if for any PPT adversaryA, there
exists a negligible function negl(�) such that,

Pr

[
[*]1 · [1]2 = [+]1 · [�]2

∧ ([*]1 , [+]1) ≠ ([0]1 , [0]1)

����� 
, �, �, �←$ F
([*]1 , [+]1) ← A(bgp,Sℓ (
, �, �, �))

]
= negl(�).

Where

Sℓ (
, �, �, �) =
{
{[
8]1 , [
8]2}2ℓ

2+1
8=1

8≠ℓ2+1
, [
ℓ2+1]2 ,

{
[�8]1 , [�8]2

}ℓ
8=1 ,

{
[�:
8]1 , [�:
8]2

}(2ℓ2+1,ℓ )
8 ,:=1,
8≠ℓ2+1

,{
[�
8 + ��8]1

}ℓ
8=1 , [�]2 , [�]2

}
and the probability is taken over the choice of 
, �, �, � and the adversaryA’s random coins.

Lemma 5.6. Assumption 3 is sound in the generic bilinear group model.

Proof. The assumption is essentially the same as Assumption 1 (Theorem 5.1) but with the
addition of the �-basis elements. Hence, the proof follows the same steps as in Theorem 5.2.

�

5.3.2 Type Chaining Proofs

Recall the definition of chainable functional commitments from Section 4.4. Within a given
CFC commitment key ck, there may exist multiple internal commitment keys correspond-
ing to different commitment types. Hence, we allow multiple commitment algorithms
Com(type) to be used on the same ck. Their syntax is given by Com(type)(ck,x) → comtype.

For increasedmodularity, wewill split our CFC construction in this chapter into smaller
proof systems that can be used independently given the same commitment key ck. These
systems, that we name type chaining proofs, allow one to switch between the different types
of commitments allowed in ck. For simplicity, we define these proof systems assuming
efficient verification.
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Definition 5.7 (Type Chaining Proof). Let Setup be a commitment setup algorithm, Com(x) be
an (input) commit algorithm, Com(y) be an (output) commit algorithm, and let ck← Setup(1� , 1ℓ )
be a commitment key. A type chaining proof system Π for the above algorithms and a class of
functions ℱ consists of a tuple of PPT algorithms (Prove,PreVer,Ver) with the following syntax:

Π.Prove(ck, (x8)8∈[<] , 5 ) → �: Given a commitment key ck, input vectors (x8)8∈[<], and a func-
tion 5 ∈ ℱ , output a proof �.

Π.PreVer(ck, 5 ) → ck 5 : Given a commitment key ck and a function 5 ∈ ℱ , output a pre-
verification key ck 5 .

Π.Ver(ck 5 , (com(x) 8)8∈[<] , com(y) ,�) → 0/1: Given input commitments (com(x) 8)8∈[<], output
commitments com(y) and a proof �, outputs 1 (accept) or 0 (reject).

Moreover, it must satisfy:
Correctness. For �, ℓ , <, ∈ N, �1 , . . . , �< , �H ∈ J , 5 ∈ ℱ where 5 :

∏
8∈[<]ℳ�8 →ℳ�H , and

x8 ∈ ℳ�8 for 8 ∈ [<], it holds that

Pr


Ver(ck 5 , (com(x) 8)8∈[<] ,

com(y) , 5 ,�) = 1

�������������

ck← Setup(1� , 1ℓ )
com(x) 8 ← Com(x)(ck, �8 ,x8) ∀8 ∈ [<]
com(y) ← Com(y)(ck, �H , 5 (x1 , . . . ,x<))
ck 5 ← PreVer(ck, 5 )
�← FuncProve(ck, (x8)8∈[<] , 5 )


= 1.

The notion of security (evaluation binding) of a type chaining proof system is evaluation
binding, identically to Theorem 4.9. Note that evaluation binding allows for adversarially
chosen commitments, and so the notion is not parametrized by the different commitment
algorithms that are used, as opposed to what occurs for correctness.

5.4 Pairing-based CFC for Quadratic Functions

In this section we describe our construction of a pairing-based chainable functional com-
mitment scheme for quadratic functions. Our goal is to prove the following theorem.

Theorem 5.8 (Pairing-based CFC). Let ℱquad = { 5 : F<·ℓ → Fℓ : 5 is quadratic} be the
family of quadratic functions with < input vectors of length ℓ and a single output vector. Let
bgp = (@,G1 ,G2 ,G) , [1]1 , [1]2) be a bilinear group setting. If Assumptions 1, 2 and 3 (Definitions
5.1, 5.3, 5.5) hold over bgp, the constructionCFC in Figure 5.6 is a chainable functional commitment
(Theorem 4.8) for ℱquad with the following properties:

• The commitment key is of size O
(
�ℓ3) group elements.

• The commitment contains one G1 group element.

• The proof size is |�| = O
(
�<2) .

• Efficient verification runs in time dominated by O
(
<2) pairing computations between G1 and

G2.
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5. Pairing-based Functional Commitments with Shorter Parameters

Moreover, CFC is additively homomorphic and enjoys efficient verification with preprocessing, where
the preprocessing key has size

��ck 5
�� = O(�) and the verifier needs to do O

(
<2) group operations.

Proof. Correctness follows by the correctness of each of the proof systems Πpow, Πquad and
Πeq, in Lemmas 5.10, 5.13 and 5.16 respectively. Evaluation binding follows from Theo-
rem 5.18. The remaining properties follow by the construction of the commitment key
in Section 5.4.1 and the proof systems in Section 5.4.2, Section 5.4.3 and Section 5.4.4. �

The running times of the prover and the verifier are dominated by the quadratic type
chaining proof, which involves the most intensive computations. We analyse these in
Theorem 5.14.

Remark 5.9. The generic transformation from a CFC for quadratic functions in [BCFL23] to a
fully-fledged CFC for circuits can be applied to our construction. This yields a CFC for circuits
with a setup size of |ck| = O

(
�F3) and a proof size of O

(
�32) for arithmetic circuits of depth 3

and width F.

Outline. In the remainder of the section, we introduce our CFC for quadratic functions
and prove the lemmas required in Theorem 5.8. In Section 5.4.1, we describe the setup
algorithm, the base commitment scheme which is used to commit to the input vectors
x, and two auxiliary commitment schemes required internally by the scheme. Then, in
Sections 5.4.2, 5.4.3, 5.4.4, we describe the three type chaining proof systems Πpow, Πquad

and Πeq that conform the main scheme. Finally, in Section 5.4.5, we describe the main
construction of the CFC, which is a combination of the base commitment scheme and the
type chaining proof systems.

5.4.1 Base Commitment Scheme

We start by describing the base algorithms of the commitment scheme, Setup and Com.
These are used across the section to commit to and prove relations on the input vectors x.
The commitment key contains 2ℓ3G1 + 2ℓ3G2 +$(ℓ2) elements. The assumptions required
to prove the evaluation binding of the type chaining proof systems that are associated to
this commitment key are based on the hardness of finding (a multiple of) �4 , �? or 
ℓ2+1

in the group G1, as introduced previously.

CFC.Setup(1� , 1ℓ ): Let ℓ be the maximum input size and � the security parameter.

Generate a bilinear group description bgp := (@,G1 ,G2 ,G) , [1]1 , [1]2) ← ℬG(1�), and let
F := Z@ .

Sample 
, �, �? , �? , �4 , �4 ←$ F and encode the key as follows:

ck =

{
{[
8]1 , [
8]2}2ℓ

2+1
8=1

8≠ℓ2+1
, [
ℓ2+1]2 ,

{
[�8]1 , [�8]2

}ℓ
8=1 ,

{
[�:
8]1 , [�:
8]2

}(2ℓ2+1,ℓ )
8 ,:=1,
8≠ℓ2+1

,{
[�?
ℓ (8−1) + �?


8]1 , [�4
8 + �4�
8]1

}ℓ
8=1 , [�?]2 , [�?]2 , [�4]2 , [�4]2

}
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5.4. Pairing-based CFC for Quadratic Functions

CFC.Com(ck,x): Let x = (G1 , . . . , Gℓ ) ∈ Fℓ be the input vector. Output com ← [2]1 =∑ℓ
8=1 G8[
8]1.

Beyond the primary commitment algorithm, we define two additional commitment
algorithms, Com(pow) and Com(eq), that are used to commit to the auxiliary vectors [2̂]1 and
[3]1, respectively. These are defined as follows:

CFC.Com(pow)(ck,x): Output [2̂]1 =
∑ℓ
8=1 G8[
ℓ (8−1)]1.

CFC.Com(eq)(ck,x): Output [3]1 =
∑ℓ
8=1 G8[�8]1.

5.4.2 Power Basis Type Chaining

Our first type chaining proof system is Πpow, which proves the equality between two
commitments to the same vector x in different bases. Πpow is defined with respect to the
standard commitment algorithm Com and the auxiliary commitment algorithm Com(pow).
We introduce the construction in Figure 5.2.

Internally, the proof system attests equality between vectors committed in com(x) =
[2]1 =

∑ℓ
8=1 G8[
8]1 and com(y) = [2̂]1 =

∑ℓ
8=1 G8[
ℓ (8−1)]1. In the scheme, note that the

smallest power of 
 that is required by the prover (regarding �-terms) is [
1�]1, as if 8 = 1
it must be that 9 ≥ 2. Therefore, we never need to give out [�]1, which would break the
scheme.

We also remark that the running time of the prover is O
(
�ℓ2) , as it requires ℓ2 multipli-

cations powers of 
 to produce a proof.

Πpow.Prove(ck,x):

Given a vector x, compute [�pow]1 ←
∑ℓ
8=1 G8[�?
ℓ (8−1) + �?
8]1.

Πpow.Ver(ck, com(x) , com(y) ,�):

• Parse �G = [2]1 and �H = [2̂]1.
• Check that [�pow]1 · [1]2 = [2̂]1 · [�?]2 + [2]1 · [�?]2.

Figure 5.2: Power type chaining proof Πpow.

Lemma 5.10. Πpow satisfies correctness.

Proof. For honestly generated proofs and commitments, the verification equation (in the
exponent) is given by:

�pow · 1 =

ℓ∑
8=1

G8�?

ℓ (8−1) + G8�?
8 = 2̂ · �? + 2 · �? .

�

Lemma 5.11. If Assumption 1 (Theorem 5.1) holds over bgp, Πpow satisfies evaluation binding.
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5. Pairing-based Functional Commitments with Shorter Parameters

Proof. Let A be an adversary against evaluation binding of Πpow. We construct an ad-
versary ℬ against the assumption as follows. ℬ(bgp,S(
, �? , �?)) samples �, �4 , �4 ←$ F
uniformly at random and generates a ck as follows:

ck =

{
{[
8]1 , [
8]2}2ℓ

2+1
8=1

8≠ℓ2+1
, [
ℓ2+1]2 ,

{
�8[1]1 , �8[1]2

}ℓ
8=1 ,

{
�:[
8]1 , �:[
8]2

}(2ℓ2+1,ℓ )
8 ,:=1,
8≠ℓ2+1

,{
[�?
ℓ (8−1) + �?


8]1 ,
(
�4[
8]1 + �4�

8[1]1
)}ℓ
8=1 , [�?]2 , [�?]2 , �4[1]2 , �4[1]2

}
It is straightforward to see that ck is distributed identically as the original one.
Then, it callsA(ck) andparses the proofs and outputs as ([2]1 , [2̂]1 , [2̂′]1 , [�pow]1 , [�′pow]1),

respectively. Note that ifA is successful, it must be that [2̂]1 ≠ [2̂′]1. Then, ℬ simply out-
puts [*]1 = [�pow]1 − [�′pow]1, [+]1 = [2̂]1 − [2̂′]1

The claim follows by subtracting the verification equation satisfied by [2̂]1 and [2̂′]1 for
the same input [2]1. Namely, as

[�pow]1 · [1]2 =[2̂]1 · [�?]2 + [2]1 · [�?]2 ,
[�′pow]1 · [1]2 =[2̂′]1 · [�?]2 + [2]1 · [�?]2.

We subtract both equations and obtain

[*]1 · [1]2 = ([�pow]1 − [�′pow]1) · [1]2 = ([2̂]1 − [2̂′]1) · [�?]2 = [+]1 · [�?]2.

�

5.4.3 Quadratic Map Type Chaining

Our second type chaining proof system isΠquad, which proves the evaluation of a quadratic
function 5 on multiple committed input vectors x1 , . . . ,x< with respect to a committed
output y = 5 (x1 , . . . ,x<). Before presenting the construction, we introduce some notation
on quadratic functions.

Notation on Quadratic Functions. We consider the family of quadratic functions ℱquad =

{ 5 : Fℓ ·< → Fℓ : 5 is quadratic}, where < is the number of input vectors and ℓ is the
input and output size. As we show in the following lemma, we note that it is sufficient to
consider homogeneous quadratic polynomials, as any quadratic polynomial 5 (x) can be
expressed as a homogeneous quadratic polynomial evaluated on (1,x).

Lemma 5.12. For any ℓ -variate quadratic polynomial 5 ∈ F[-1 , . . . , -ℓ ]≤2, there exists a homo-
geneous ℓ + 1-variate quadratic polynomial 5̄ ∈ F[-0 , -1 , . . . , -ℓ ]2 such that 5 (x) = 5̄ (1,x) for
every x ∈ Fℓ .

Proof. Consider the ℓ -variate quadratic polynomial 5 (x) = ∑ℓ
8=1

∑ℓ
9=1 58 , 9G8G 9+

∑ℓ
8=1 68G8+ℎ.

Wedefine a ℓ+1-variate homogeneous quadratic polynomial 5̄ as 5̄ (G0 ,x) =
∑ℓ
8=0

∑ℓ
9=0 5̄8 , 9G8G 9
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5.4. Pairing-based CFC for Quadratic Functions

such that:

5̄8 , 9 =


5̄8 , 9 if 1 ≤ 8 , 9 ≤ ℓ
68 if 9 = 0, 1 ≤ 8 ≤ ℓ
0 if 8 = 0, 1 ≤ 9 ≤ ℓ
ℎ if 8 = 9 = 0

The equality of 5 (x) and 5̄ (1,x) as polynomial functions follows by setting G0 = 1, as

5̄ (1,x) =
ℓ∑

8 , 9=1
58 , 9G8G 9 +

ℓ∑
8=1

5̄8 ,0G8 +
ℓ∑
9=1

5̄0, 9G 9 + 5̄0,0 =

ℓ∑
8 , 9=1

58 , 9G8G 9 +
ℓ∑
8=1

68G8 + ℎ = 5 (x).

�

For a single-input homogeneous quadratic function 5 : Fℓ → Fℓ , we denote its co-
efficients by 58 , 9 ,: ∈ F for 8 , 9 , : ∈ [ℓ ]. The :-th coordinate of 5 (x) is given by H: =∑ℓ
8, 9=1 58 , 9 ,:G8G 9 . For its multi-input analogue 5 : Fℓ ·< → Fℓ , we denote its coefficients

by 5
(ℎ,ℎ′)
8 , 9 ,:

where ℎ, ℎ′ ∈ [<]. The :-th output coordinate is given by

H: = 5:(x1 , . . . ,x<) =
<∑
ℎ,ℎ′

ℓ∑
8 , 9=1

5
(ℎ,ℎ′)
8, 9

G
(ℎ)
8
G
(ℎ′)
9
.

Construction. We describe the type chaining proof in Figure 5.4, which entails the core of
our CFC construction. In Figure 5.3 we introduce the simpler single-input case explicitly,
as it captures the main properties and intuition of the proof system, albeit with a notably
simpler notation.

Lemma 5.13. The construction Πquad satisfies correctness.

Proof. The first three verification equations are straightforward to verify. For the quadratic
function test, the LHS (in the single-input scheme in Figure 5.3) is given by:

2̃ · ck 5 =
©­«

ℓ∑
8′, 9′=1

G8′G 9′

8′+ℓ (9′−1)ª®¬ ©­«

ℓ∑
8 , 9 ,:=1

58 , 9 ,:�
:
ℓ

2+1−8−ℓ (9−1)ª®¬
=

ℓ∑
8 , 9 ,:,8′, 9′=1
(8, 9)≠(8′, 9′)

58 , 9 ,:G8′G 9′�
:
ℓ

2+1−(8′−8)−ℓ (9′−9) +
ℓ∑

8 , 9 ,:=1
58 , 9 ,:G8G 9�

:
ℓ
2+1

= � 5 · 1 +
ℓ∑
:=1

H:�
:
ℓ

2+1

= � 5 · 1 + 3 · 
ℓ
2+1.

Where in the second step, we separate the terms corresponding to 
ℓ
2+1. Note that the

product only contains 
ℓ2+1 terms whenever (8 , 9) = (8′, 9′).
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Πquad.Prove(ck,x, 5 ):

Let 58 , 9 ,: be the coefficients of a quadratic form 5 where H: =
∑
8 , 9 58 , 9 ,:G8G 9 .

Compute a quadratic proof as:

[� 5 ]1 ←
ℓ∑

8 , 9 ,:,8′, 9′=1
(8 , 9)≠(8′, 9′)

58 , 9 ,:G8′G 9′[�:
ℓ
2+1−(8′−8)−ℓ (9′−9)]2

• Compute an auxiliary [2̂]2 ←
∑ℓ
8=1 G8[
ℓ (8−1)]1.

• Compute the tensor encoding [2̃]1 ←
∑ℓ
8, 9=1 G8G 9[
ℓ (9−1)+8]1

• Compute an auxiliary eq commitment [3̌]1 ←
∑ℓ
8=1 H8[�8
2ℓ2+1]1

• Output �quad = ([2̂]2 , [2̃]1 , [� 5 ]1 , [3̌]1)

Πquad.PreVer(ck, 5 ):

Compute and output

[ck 5 ]2 ←
ℓ∑

8 , 9 ,:=1
58 , 9 ,:[�:
ℓ

2+1−8−ℓ (9−1)]2

Πquad.Ver(ck, com(x) , com(y) ,�quad):

• Parse com(x) = ([2]1 , [2̂]1) and com(y) = [3]1.
• Parse �quad = ([2̂]2 , [2̃]1 , [� 5 ]1 , [3̌]1).
• Check [1]1 · [2̂]2 = [2̂]1 · [1]2 (G2 commitment equality)

• Check [2̃]1 · [1]1 = [2]1 · [2̂]2 (tensor product)

• Check [3]1 · [
2ℓ2+1]2 = [3̌]1 · [1]2 (degree test for [3]1)
• Check [2̃]1 · [ck 5 ]2 = [� 5 ]1 · [1]2 + [3]1 · [
ℓ

2+1]2 (quadratic function)

Figure 5.3: Quadratic type chaining proof Πquad (single-input).

For the multi-input scheme in Figure 5.4, the argument is identical, except that the
notation is more cumbersome. The LHS is given by:
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5.4. Pairing-based CFC for Quadratic Functions

Πquad.Prove(ck, (x(1) , . . . ,x(ℎ)), 5 ):

Let 5 (ℎ,ℎ
′)

8 , 9 ,:
be the coefficients of a homogeneous quadratic polynomial 5 where

H: =
∑
8, 9 5

(ℎ,ℎ′)
8 , 9 ,:

G
(ℎ)
8
G
(ℎ′)
9

. Compute a quadratic proof as:

[� 5 ]1 ←
<∑

ℎ,ℎ′=1

ℓ∑
8 , 9 ,:,8′, 9′=1
(8 , 9)≠(8′, 9′)

5
(ℎ,ℎ′)
8 , 9 ,:

G
(ℎ)
8′ G

(ℎ′)
9′ [�

:
ℓ
2+1−(8′−8)−ℓ (9′−9)]2

• Compute auxiliary [2̂ℎ]2 ←
∑ℓ
8=1 G

(ℎ)
8
[
ℓ (8−1)]1 for every ℎ ∈ [<].

• Compute the tensor encodings [2̃ℎ,ℎ′]1 ←
∑ℓ
8, 9=1 G

(ℎ)
8
G
(ℎ′)
9
[
ℓ (9−1)+8]1

• Compute an auxiliary eq commitment [3̌]1 ←
∑ℓ
8=1 H8[�8
2ℓ2+1]1

• Output �quad = (([2̂ℎ]2)ℎ∈[<] , ([2̃ℎ,ℎ′]1)ℎ,ℎ′∈[<] , [� 5 ]1 , [3̌]1)

Πquad.PreVer(ck, 5 ):

Compute and output

[ck 5 ,(ℎ,ℎ′)]2 ←
ℓ∑

8 , 9 ,:=1
5
(ℎ,ℎ′)
8 , 9 ,:
[�:
ℓ2+1−8−ℓ (9−1)]2

for every ℎ, ℎ′ ∈ [<].

Πquad.Ver(ck 5 , (com(x)ℎ)ℎ∈[<] , com(y) ,�quad):

• Parse ck 5 = ([ck 5 ,(ℎ,ℎ′)]2)ℎ,ℎ′∈[<].
• Parse com(x)ℎ = ([2ℎ]1 , [2̂ℎ]1) for ℎ ∈ [<] and com(y) = [3]1.
• Parse �quad = ([2̂ℎ]2 , [2̃ℎ,ℎ′]1 , [� 5 ]1 , [3̌]1).
• Check [1]1 · [2̂ℎ]2 = [2̂ℎ]1 · [1]2 for every ℎ ∈ [<] (G2 commitment equality)

• Check [2̃ℎ,ℎ′]1 · [1]1 = [2ℎ]1 · [2̂ℎ]2 for every ℎ ∈ [<] (tensor product)
• Check [3]1 · [
2ℓ2+1]2 = [3̌]1 · [1]2 (degree test for [3]1)
• Check

∑<
ℎ,ℎ′=1

(
[2̃ℎ,ℎ′]1 · [ck 5 ,(ℎ,ℎ′)]2

)
= [� 5 ]1 · [1]2 + [3]1 · [
ℓ

2+1]2 (quadratic
function)

Figure 5.4: Quadratic type chaining proof Πquad (multi-input).
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<∑
ℎ,ℎ′

(
2̃ℎ,ℎ′ · ck 5 ,(ℎ,ℎ′)

)
=

<∑
ℎ,ℎ′

©­«
ℓ∑

8′, 9′=1
G
(ℎ)
8′ G

(ℎ′)
9′ 
8

′+ℓ (9′−1)ª®¬ ©­«
ℓ∑

8 , 9 ,:=1
5
(ℎ,ℎ′)
8 , 9 ,:

�:
ℓ
2+1−8−ℓ (9−1)ª®¬

=

<∑
ℎ,ℎ′

ℓ∑
8 , 9 ,:,8′, 9′=1
(8 , 9)≠(8′, 9′)

5
(ℎ,ℎ′)
8 , 9 ,:

G
(ℎ)
8′ G

(ℎ′)
9′ �:
ℓ

2+1−(8′−8)−ℓ (9′−9)

+
<∑
ℎ,ℎ′

ℓ∑
8 , 9 ,:=1

5
(ℎ,ℎ′)
8 , 9 ,:

G
(ℎ)
8
G
(ℎ′)
9

�:
ℓ
2+1

= � 5 · 1 +
ℓ∑
:=1

H:�
:
ℓ

2+1

= � 5 · 1 + 3 · 
ℓ
2+1.

�

Before proving the security of the scheme, we include a lemma about prover and verifier
efficiency. We note that for families of functions with sparse coefficients, the running times
of bothΠquad.Prove andΠquad.PreVer are faster. For instance, for functionswhere 5 (ℎ,ℎ

′)
8 , 9 ,:

= 0
except if 8 = 9 = :, algorithm Πquad.PreVer requires only O

(
<2ℓ

)
group operations.1

Lemma 5.14. In the constructionΠquad (Figure 5.4), the worst-case running times of the algorithms
are:

• Πquad.Prove is dominated by the time required to carry out O
(
<2ℓ3 log ℓ2) field operations and

O
(
<2ℓ3) group operations.

• Πquad.PreVer is dominated by the time required to carry out O
(
<2ℓ3) group operations.

• Πquad.Ver is dominated by the time required to carry out O
(
<2) pairing operations.

Proof. ForΠquad.PreVer, the result follows by inspection as the algorithm needs to compute
<2 pre-verification keys

[
ck 5 ,(ℎ,ℎ′)

]
2 for every ℎ, ℎ′ ∈ [<], where for computing each of the

keys one needs to sum over ℓ3 distinct group elements from ck. Similarly, for Πquad.Ver
the running time is dominated by the final check, which involves a sum over <2 elements
in G) where each of them is the output of a pairing computation.

For Πquad.Prove, the naïve complexity is O
(
<2ℓ5) , but the prover can leverage the

structure of the proof terms to compute [� 5 ]1 faster. For fixed ℎ, ℎ′, :, consider

[�(ℎ,ℎ
′)

5 ,:
]1 =

ℓ∑
8, 9 ,8′, 9′=1
(8, 9)≠(8′, 9′)

5
(ℎ,ℎ′)
8 , 9 ,:

G
(ℎ)
8′ G

(ℎ′)
9′ [�

:
ℓ
2+1−(8′−8)−ℓ (9′−9)]2.

1 Such classes of sparse functions actually appear naturally in some applications of functional commitents,
as they capture gate functions in arithmetic circuits. In Chapter 6, we denote them by separable functions
(Theorem 6.15).
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Naturally, [� 5 ]1 =
∑
ℎ,ℎ′∈[<],:∈[ℓ ][�(ℎ,ℎ

′)
5 ,:
]1. To compute each of the [�(ℎ,ℎ

′)
5 ,:
]1 efficiently, define

the univariate polynomials

? 5 (
) =
∑
8 , 9∈[ℓ ]

58 , 9 ,:

ℓ2+1−8−ℓ 9 , ?G(
) =

∑
8, 9∈[ℓ ]

G8G 9

8+ℓ 9 .

Both ? 5 (
) and ?G(
) are polynomials of degree ℓ2 on 
. Then, the prover can compute all
terms on [�(ℎ,ℎ

′)
5 ,:
]1 by simply calculating the product of polynomials ? 5 (
) · ?G(
), which

gives:

? 5 (
) · ?G(
) =
ℓ∑

8 , 9 ,8′, 9′=1
5
(ℎ,ℎ′)
8 , 9 ,:

G
(ℎ)
8′ G

(ℎ′)
9′ 
ℓ

2+1−(8′−8)−ℓ (9′−9)

Hence, by ignoring the term on 
ℓ
2+1 which correspond to (8 , 9) = (8′, 9′), the prover can

compute all the coefficients of [�(ℎ,ℎ
′)

5 ,:
]1 via polynomial multiplication. Using an FFT-based

polynomial multiplication algorithm, this requires O
(
ℓ2 log ℓ2) field operations. As this

has to be done for every ℎ, ℎ′ ∈ [<] and for every : ∈ [ℓ ] separately, the total running time
of the prover is dominated by the time required to do O

(
<2ℓ3 log ℓ2) field operations plus

the time required to power and add all group elements, which involve O
(
<2ℓ3) group

operations. �

Lemma 5.15. If Assumption 2 (Theorem 5.3) holds over bgp, Πquad satisfies evaluation binding.

Proof. Weprove security directly for themulti-input scheme, as the single-input scheme is a
special case of it. LetA be an adversary against evaluation binding of Πquad. We construct
an adversaryℬ against the assumption as follows. ℬ(bgp,S(
)) samples �, �? , �? , �4 , �4 ←$

F uniformly at random and generates a commitment key ck as follows:

ck =

{
{[
8]1 , [
8]2}2ℓ

2+1
8=1

8≠ℓ2+1
, [
ℓ2+1]2 ,

{
�8[1]1 , �8[1]2

}ℓ
8=1 ,

{
�:[
8]1 , �:[
8]2

}(2ℓ2+1,ℓ )
8 ,:=1,
8≠ℓ2+1

,{(
�?[
ℓ (8−1)]1 + �?[
8]1

)
,
(
�4[
8]1 + �4�

8[1]1
)}ℓ
8=1

, �?[1]2 , �?[1]2 , �4[1]2 , �4[1]2
}

It is straightforward to see that ck is distributed identically as the output of Setup(1� , 1ℓ ).
Then, ℬ callsA(ck) and parses the proofs and outputs ofA as

�quad =

(
([2̂ℎ]2)ℎ∈[<] , ([2̃ℎ,ℎ′]1)ℎ,ℎ′∈[<] , [� 5 ]1 , [3̌]1

)
�′quad =

(
([2̂′ℎ]2)ℎ∈[<] , ([2̃

′
ℎ,ℎ′]1)ℎ,ℎ′∈[<] , [�

′
5 ]1 , [3̌

′]1
)

respectively. Note that ifA is successful, it must be that [3]1 ≠ [3′]1. Finally, ℬ outputs
[*]1 = [� 5 ]1 − [�′5 ]1, [+]1 = [3′]1 − [3]1, and, = [3̌]1 − [3̌′]1.

Next, we show that ℬ is a successful adversary against the assumption. First, due to
the non-degeneracy of the pairing (in the G2 equality check and tensor product check), we
know that [2̃ℎ,ℎ′]1 = [2̃′

ℎ,ℎ′]1 for every ℎ, ℎ′ ∈ [<].
Second, due to the degree check, we have that:

[3]1 · [
2ℓ2+1]2 = [3̌]1 · [1]2 and [3′]1 · [
2ℓ2+1]2 = [3̌′]1 · [1]2 ,
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Subtracting both sides yields ([3′]1 − [3]1) · [
2ℓ2+1]2 = ([3̌]1 − [3̌′]1) · [1]2.
Third, due to the quadratic function check,

[� 5 ]1 · [1]2 + [3]1 · [
ℓ
2+1]2 =

∑
ℎ,ℎ′∈[<]

[2̃ℎ,ℎ′]1 · [ck 5 ,(ℎ,ℎ′)]2 = [�′5 ]1 · [1]2 + [3
′]1 · [
ℓ

2+1]2 ,

Again, subtracting elements from both sides of the equality yields that ([� 5 ]1−[�′5 ]1)·[1]2 =

([3′]1 − [3]1) · [
ℓ
2+1]2, which concludes the proof.

�

5.4.4 Equality Type Chaining

Our last type chaining proof system isΠeq, which is a simple equality proof system between
a �-basis commitment [3]1 =

∑ℓ
8=1 G8[�8]1 and a 
-basis commitment [2]1 =

∑ℓ
8=1 G8[
8]1.

Naturally, Πeq is defined with respect to Com(eq) and Com. We introduce the construction
in Figure 5.5.

We remark that the prover time is linear, O(�ℓ ). Moreover, there is no need for specific
efficient verification algorithms as the verifier already runs in timeO(�). DespiteΠeq being
the most efficient of our proof systems, note that it requires the strongest assumption, as
we cannot simulate any of the terms of the commitment key in the security proof. It is an
interesting open question whether the assumption can be simplified.

Πeq.Prove(ck,x):

Compute and output [�eq]1 ←
∑ℓ
8=1 G8

(
[�4
8 + �4�8]1

)
.

Πeq.Ver(ck, com(x) , com(y) ,�eq):

• Parse com(x) = [3]1 and com(y) = [2]1.
• Check [�eq]1 · [1]2 = [2]1 · [�4]2 + [3]1 · [�4]2.

Figure 5.5: Equality type chaining proof Πeq.

Lemma 5.16. The construction Πeq satisfies correctness.

Proof. The verification equation is given by:

�eq · 1 =

ℓ∑
8=1

G8�4

8 +

ℓ∑
8=1

G8�4�
8 = 2 · �4 + 3 · �4

�

Lemma 5.17. Suppose that Assumption 3 (Theorem 5.5) holds over bgp. Then, Πeq satisfies
evaluation binding.
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Proof. LetA be an adversary against evaluation binding ofΠeq. We construct an adversary
ℬ against the assumption as follows. ℬ(bgp,S(
, �, �4 , �4)) samples �? , �? ←$ F uniformly
at random and generates a commitment key ck as follows:

ck =

{
{[
8]1 , [
8]2}2ℓ

2+1
8=1

8≠ℓ2+1
, [
ℓ2+1]2 ,

{
[�8]1 , [�8]2

}ℓ
8=1 ,

{
[�:
8]1 , [�:
8]2

}(2ℓ2+1,ℓ )
8 ,:=1,
8≠ℓ2+1

,{(
�?[
ℓ (8−1)]1 + �?[
8]1

)
, [�4
8 + �4�

8]1
}ℓ
8=1

, �?[1]2 , �?[1]2 , [�4]2 , [�4]2
}

Clearly, ck is distributed identically as the output of Setup(1� , 1ℓ ). Then, ℬ calls A(ck)
and parses the proofs and outputs of A as ([3]1 , [2]1 , [2′]1 , [�eq]1 , [�′eq]1), respectively.
Note that ifA is successful, it must be that [2]1 ≠ [2]1. Then, ℬ simply outputs [*]1 =

[�eq]1 − [�′eq]1, [+]1 = [2]1 − [2′]1
The claim follows as in the previous proofs, by subtracting the verification equation

satisfied by [2]1 and [2′]1 for the same input [3]1, which yields:

[*]1 · [1]2 = ([�eq]1 − [�′eq]1) · [1]2 = ([2]1 − [2′]1) · [�4]2 = [+]1 · [�4]2.

�

5.4.5 CFC Construction

Finally, we present the CFC construction in Figure 5.6. Recall that the CFC algorithms Setup
and Com are described in Section 5.4.1, as well as the auxiliary commitment algorithms
Com(pow) and Com(eq).

Theorem 5.18. IfΠpow ,Πquad ,Πeq satisfy evaluation binding, the construction CFC in Figure 5.6
also satisfies evaluation binding.

Proof. The proof is a game-based proof which relies on the evaluation binding of the
internal proof systems Πpow, Πquad and Πeq. LetA be an adversary against the evaluation
binding of CFC, this is, A(ck) outputs a function 5 : ℳℓ ···< → ℳℓ ∈ ℱquad, a tuple of
input commitments (com1 , . . . , com<), two different output commitments comH , com′H , and
two corresponding valid opening proofs �,�′. We refer to this as the standard evaluation
binding game Hyb0.

We define a sequence of game hops in Figure 5.7. In these games, we parse the proofs
as follows:

� =
(
{�pow,8}8∈[<] ,�quad ,�eq , {[2̂8]1}8∈[<] , [3]1

)
,

�′ =
(
{�′pow,8}8∈[<] ,�′quad ,�

′
eq , {[2̂′8]1}8∈[<] , [3′]1

)
.

On each game hop, we add the condition that one of the internal commitments in � must
be equal to the corresponding one in �′.

We now proceed to bound the advantage of any PPT adversaryA against Hyb0 via a
series of lemmas. Note that Hyb0 and Hyb1,0 are identical.
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CFC.FuncProve(ck, (x1 , . . . ,x<), 5 ) :

• y← 5 (x1 , . . . ,x<).
• [2̂8]1 ← CFC.Com(pow)(ck,x8) for every 8 ∈ [<].
• [3]1 ← CFC.Com(eq)(ck, y).
• �pow,8 ← Πpow.Prove(ck,x8) for every 8 ∈ [<].
• �quad ← Πquad.Prove(ck, (x1 , . . . ,x<), 5 ).
• �eq ← Πeq.Prove(ck, y).
• Output � = ({�pow,8}8∈[<] ,�quad ,�eq , {[2̂8]1}8∈[<] , [3]1).

CFC.PreFuncVer(ck, 5 ) :

• Compute ckquad ← Πquad.PreVer(ck, 5 ).
• Compute ckeq ← Πeq.PreVer(ck).
• Output (ckquad , ckeq).

CFC.EffFuncVer(ck 5 , (com1 , . . . , com<), comH ,�) :

• Parse � = ({�pow,8}8∈[<] ,�quad ,�eq , {[2̂8]1}8∈[<] , [3]1).
• Check that Πpow.Ver(ck, com8 , [2̂8]1 ,�pow,8) = 1 for every 8 ∈ [<].
• Check that Πquad.Ver(ckquad , {(com1 , [2̂]1)}8∈[<] , [3]1 ,�quad) = 1.

• Check that Πeq.Ver(ckeq , [3]1 , comH ,�eq) = 1.

Figure 5.6: CFC construction from the type chaining proof systems Πpow, Πquad and Πeq.

Lemma 5.19. For any 8 ∈ [<], there exists a PPT adversary ℬ against the evaluation binding of
Πpow such that ���Pr[Hyb1,8−1

A (�) = 1] − Pr[Hyb1,8
A (�) = 1]

��� ≤ Advevbind
Πpow ,ℬ(�).

Proof. Fix 8 ∈ [<]. We build an adversary ℬ as follows. ℬ receives input ck from its
challenger and runsA(ck). Then, it parses the proofs �,�′ ofA and retrieves the tuples
([2̂8]1 ,�pow,8) and ([2̂′8]1 ,�′pow,8). Finally, ℬ simply forwards (com8 , [2̂8]1 , [2̂′8]1 ,�pow,8 ,�′pow,8)
to its challenger.

We argue that ifAwins in Hyb1, 9−1 but not in Hyb1,8 , thenℬ also wins in its correspond-
ing game. First, asA wins in Hyb1, 9−1, it holds thatΠpow.Ver(ck, com8 , [2̂8]1 ,�pow,8) = 1 and
that Πpow.Ver(ck, com8 , [2̂′8]1 ,�′pow,8) = 1. Finally, asA does not win in Hyb1, 9 , it must be
that [2̂8]1 ≠ [2̂′

8
]1. Hence, ℬ breaks evaluation binding of Πpow. �

Lemma 5.20. There exists a PPT adversary ℬ against the evaluation binding of Πquad such that

Pr[Hyb1,<
A (�) = 1] ≤ Pr[Hyb2

A(�) = 1] + Advevbind
Πquad ,ℬ(�).

Proof. The proof is analogous to that of Theorem 5.19. ℬ calls A(ck) and parses the
proofs �,�′. Note that ifA wins in Hyb1,< but not in Hyb2, it must be that (com8 , [2̂8]1) =
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Hyb0
A(�):

ck← CFC.Setup(1� , 1ℓ )
( 5 , (com8)8∈[<] , comH , com′H ,�,�′) ← A(ck)
Parse � = ({�pow,8}8∈[<] ,�quad ,�eq , {[2̂8]1}8∈[<] , [3]1)
Parse �′ = ({�′pow,8}8∈[<] ,�′quad ,�

′
eq , {[2̂′8]1}8∈[<] , [3′]1)

assert comH ≠ com′H
assert CFC.Ver(ck, 5 , (com8)8∈[<] , comH ,�) = 1
assert CFC.Ver(ck, 5 , (com8)8∈[<] , com′H ,�′) = 1

return 1

Hyb1,8
A (�), 0 ≤ 8 ≤ <:

// identical to Hyb0
A(�) until before “return 1”

assert [2̂ 9]1 = [2̂′
9
]1 ∀9 ∈ [8]

return 1

Hyb2
A(�):

// identical to Hyb1,<
A (�) until before “return 1”

assert [3]1 = [3′]1
return 1

Figure 5.7: Games Hyb0 ,Hyb1,8 ,Hyb2 for the proof of evaluation binding of CFC. We highlight changes
between games.

(com8 , [2̂′8]1) for every 8 ∈ [<], and that [3]1 ≠ [3′]1. Hence, ℬ simply forwards the tuple
((com8 , [2̂8]1)8∈[<] , [3]1 , [3′]1 ,�quad ,�′quad) fromA(ck)’s outputs to its challenger, breaking
evaluation binding of Πquad. �

Lemma 5.21. There exists a PPT adversary ℬ against the evaluation binding of Πeq such that

Pr[Hyb2
A(�) = 1] ≤ Advevbind

Πeq ,ℬ (�).

Proof. The proof is again analogous to that of Theorem 5.19. ℬ calls A(ck) and parses
the proofs �,�′. Note that ifA wins in Hyb2, it must be that [3]1 = [3′]1 and that comH ≠

com′H . Hence, ℬ simply forwards ([3]1 , comH , com′H ,�eq ,�′eq) fromA(ck)’s outputs to its
challenger, breaking evaluation binding of Πeq. �

The overall proof follows by aggregating the bounds from Lemmas 5.19, 5.20 and 5.21,
as we obtain that

Pr[Hyb0
A(�) = 1] ≤ = · Advevbind

Πpow ,ℬ(�) + Advevbind
Πquad ,ℬ(�) + Advevbind

Πeq ,ℬ (�).

�
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6

Circuit-Succinct Algebraic Batch
Arguments for NP

In this chapter, we present the first algebraic construction of a batch argument for NP that
is circuit-succinct, this is, such that the proof size is O(� · |w|) where w is the NP witness.
The chapter is based on results from the article “Circuit-Succinct Algebraic Batch Argument
from Standard Assumptions”[BFL25a], which is in submission at the time of writing.

The chapter is structured as follows. In Section 6.1, we present a succinct summary of
contributions, followed by an extensive technical overview in Section 6.2. In Section 6.4,
we introduce a novel notion of projective chainable functional commitments (PCFC) and
our circuit model. In Section 6.5 and Section 6.6, we present our basic and circuit-succinct
compilers, respectively, which transform a PCFC into a BARG. Finally, in Section 6.7 we
construct an algebraic PCFC from the MDDH assumption over bilinear groups with the
properties required by our compilers.

6.1 Contributions

We continue the line of work established by [WW22, GLWW24] on obtaining algebraic
constructions of batch arguments for NP. We present a new construction of BARG for
NP directly over bilinear pairings under the matrix decisional Diffie-Hellman (MDDH)
assumption, which achieves proofs of size O(� · |w|) with matching online verification
time. This improves over the schemes in [WW22, GLWW24] which present a proof size of
|�| = O(� · |C|), and in which an online verifier runs in time Ω(� · |C|).

Additionally, our BARG natively supports proving : different circuits, one for each
statement. In prior work, this property is achieved with the overhead of using a universal
circuitU to define the batch language and including the description of each circuit in the
statement, i.e., by proving thatU((C8 , x8), w8) = 1.

To achieve the above result, we rely on a new notion that we call projective chainable
functional commitments (PCFC), which is a combination of projective commitments (PC)
[GZ21, WW24b] and chainable functional commitments (CFC) [BCFL23], together with
two technical ingredients:
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1. A black-box compiler that transforms a PCFC with certain properties into a BARG; and

2. An algebraic construction of such a PCFC based on the MDDH assumption.

We believe that our black-box compilermight be of independent interest for understand-
ing the connection between functional commitments (FCs) [LRY16] and BARGs, which
relax SNARGs by forgoing soundness and succinctness respectively. It might also pave
the way towards obtaining other direct algebraic constructions of BARGs from different
assumptions, such as lattices, which is an open problem.

6.2 Technical Overview

Themain result of this work is an algebraic construction of BARGwith proof size and online
verification time O(� · |w|). We obtain this result by compiling, in a black-box manner, a
new commitment primitive that we call projective chainable functional commitment (PCFC),
for which we give an algebraic construction over bilinear groups.

To give a high-level overview of our approach, in Section 6.2.1, we begin by recalling
and generalizing the notions of projective commitments (PC), [GZ21, WW24b] and chain-
able functional commitments (CFC) [BCFL23], and introducing the notion of PCFC. We
then revisit in Section 6.2.2 the algebraic BARG construction of Waters and Wu [WW22]
by viewing it as a black-box compilation from a PCFC to a BARG. From this abstract
perspective, it becomes clear how, given a PCFC with stronger properties, the compiler
can be tweaked to improve the proof size and online verification time from O(� · |C|) to
O(� · |w|). We thus present in Section 6.2.3 how to obtain such a PCFC from pairing groups
based on the MDDH assumption. Finally, in Section 6.2.4 we conclude with a summary of
our results and an outlook on future work.

6.2.1 Projective Chainable Functional Commitments (PCFC)

A (deterministic) commitment scheme allows the generation of a short commitment comG

which is computationally binding to a vector x ∈ ℳℓ potentially much longer than comG .
Many variations of the notion exist that extend the basic functionality and security of
a commitment scheme. Our new notion, PCFC, which we formalise in Section 6.4, is a
combination of two such variations: projective commitments (PC) and chainable functional
commitments (CFC).

Projective Commitments (PC). In a Projective commitment (PC) scheme, introduced by
Wee and Wu [WW24b]1, the commitment key ck of the scheme can be sampled in two
modes: the normal mode and the projective mode. Sampling the key in normal mode leads
to a standard commitment key ck that computationally binds a vector x ∈ ℳℓ to a com-
mitment com. In projective mode, the commitment key ck is sampled together with a
trapdoor td that encodes a hidden index set � ⊆ [ℓ ]. Here, ck hides a projective key, which is
essentially a secondary commitment key that is sampled only at the positions indexed by

1 Similar properties for commitments appear in [GZ21] under the name of �-extractability.
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�. The trapdoor td allows one to project any commitment com to x ∈ ℳ to a commitment
pcom to the subvector x� ∈ ℳ� .2 Without knowing td, both modes are computationally
indistinguishable.

In more detail, a PC features the following algorithms (among others):

• ProjSetup(1� , 1ℓ , �): Generates an ordinary-looking commitment key ck together with a
trapdoor td which encodes a secret index set � ⊆ [ℓ ].

• ProjCom(td,x) → pcom: Generate a projective commitment pcom of the subvector x� .

• Proj(td, com) → pcom: Project a commitment com into a projective commitment pcom.

Projective commitments are closely related to somewhere extractable commitments [HW15,
CJJ21], which essentially allow one to generate commitment keys so that a commitment
comG is statistically binding at some positions � ⊂ [ℓ ]. The trapdoor td allows one to actually
extract x� ∈ ℳ̄ (where ℳ̄ ⊆ ℳ is a smaller extraction space) leveraging the statistical bind-
ing property. In this work, we enhance the original notion of projective commitments to
also provide somewhere extractability. This is, our commitments also feature the following
algorithm:

• ProjExt(td, com): Given com, which is guaranteed3 to be committing to a vector whose
positions indexed by � belong to the projective subspace ℳ̄� , extract x� ∈ ℳ̄� such that
ProjCom(td,x�) = Proj(td, com).

To achieve the extractability outlined in the above simplified description, a commitment
com has to be of size linear in |�|, which will be too large for our application of construct-
ing circuit-succinct BARGs. Instead, we further augment the syntax of the commitment
algorithm Com (among others) to take as input another index set � chosen from some
admissible set J ⊆ 2[ℓ ] so that the resulting commitment com is committing to a subsector
x� ∈ ℳ� . Now, the extractability guarantee is only required to hold at the positions � ∩ �
for any � ∈ J . By picking J appropriately, we can ensure that |� ∩ �| and hence |com| is
never too large which eventually allows us to achieve circuit-succinctness.

Chainable Functional Commitments (CFC). While ordinary commitments are “all-or-
nothing”, functional commitments (FC) [LRY16] enable the generation of a succinct (weakly
sound) proof asserting the correctness of y = 5 (x) for the vector x committed in comG .
Chainable functional commitments (CFC) [BCFL23] extend this functionality and allow to
generate proofs for y = 5 (x1 , . . . ,x:)where both the inputs x1 , . . . ,x: and the output y
are committed. A CFC is “chainable” in the sense that it allows one to prove relations
between a sequence of committed inputs and outputs, in a “commit-and-prove” fashion.
A (C)FC usually satisfies a relaxed notion of soundness called evaluation binding – no
efficient prover could produce valid proofs for ( 5 , comG , comH) and ( 5 , comG , com′H) for
comH ≠ com′H . In this work, however, we deviate from this usual notion and require a
stronger property that we introduce next.
2 The subvector x� is obtained by taking the entries of x indexed by �.
3 To be (weakly) asserted by another algorithm called ProjProve and verified by ProjVer.
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Projective Chainable Functional Commitments (PCFC). Although PC and CFC are useful
notions in their own rights, combining them into a PCFC makes the result more powerful
than the sum of the two, since it allows us to reason about the functional relations between
projective commitments and their extracted messages, whose spaces are hidden from a
malicious prover. Such a property already resembles the functionality of a BARG, as both
allow to extract part of the inputs to the batch computation while verifying its correctness.

In more detail, recall that a PC commitment key ck hides a secret index set � ⊆ [ℓ ]while
a CFC allows the generation of functional proofs. To glue these two notions together, we
consider a class of functions called “�-separable functions” and define a property called
projective chain binding with respect to these functions.

�-Separable Functions. We say that a function 5 : (ℳℓ ): → ℳℓ is �-separable if the
coordinates in � of the output vector only depend on the coordinates in � of each input
vector.4 A simple example is when 5 is the parallel application of another function 5� :
ℳℓ/: →ℳℓ/: such that 5 (x1 , . . . ,x:) = ( 5�(x1), . . . , 5�(x:)).

Projective Chain Binding. We say that a PCFC is projective chain binding for an �-
separable function 5 if no PPT adversary, given both a commitment key ck, which is
trapdoored to be projective at �, and the trapdoor td, can produce tuples (com, comH ,�) and
(com′, com′H ,�′)where

• � and �′ are valid CFC proofs for 5 (com) = comH and 5 (com′) = com′H , respectively, and

• Proj(td, com) = Proj(td, com′), but

• Proj(td, comH) ≠ Proj(td, com′H).

Essentially, the projective chain binding property allows a security reduction to transfer
the evaluation binding property of the CFC to hold also in the projective subspace. This is
especially powerful if we leverage the somewhere extractability property of PC on the pro-
jective subspace. It is worth noting that some of the proof systems that are internally used
to build the FC in [WW24b] achieve a similar notion to projective chain binding (although
the notion is not attained by the FC itself). In their case, however, the projection trapdoor
is not available to the adversary. As we discuss in the next section, our strengthening is
crucial when proving the security of our circuit-succinct BARG construction.

6.2.2 Black-Box Compiler from PCFC to BARG

Recall that in a BARG the prover aims to convince the verifier that : NP statements
x1 , . . . , x: are valid. That is, the prover knows witnesses w1 , . . . , w: such that C(x8 , w8) = 1
for all 8 ∈ [:]. The main security property of BARGs, known as somewhere extractability,
requires the existence of an efficient extractor which, given a valid proof, can extract a
valid witness for the 8∗-th instance w8∗ , where 8∗ is a hidden index programmed into the
common reference string.
4 Our formal definition generalizes to allow different separability sets for inputs and outputs.
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Suppose the circuit C is such that the input-output relation of each gate 6 ∈ C is
captured by a gate function "6 represented as a quadratic polynomial over a field F,
and write G8 ,6 for the output value from the 6-th gate (this is, the 6-th circuit wire) in
the evaluation of C(x8 , w8). In the following, let Gstmt ,Gwit ,Gout be the sets of wires of C
corresponding to the statement input, the witness input and all gate outputs, respectively.

Basic Compiler. To obtain an improved algebraic BARG, a natural starting point is the
algebraic BARG of Waters and Wu [WW22]. Our first step is to view5 their construction
as black-box compiler which turns a PCFC into a BARG. We formalize this compiler in
Section 6.5 and give a high-level overview here.

Basic Compiler (Abstraction of [WW22]):

1. The prover PCFC-commits to the evaluation of C(x8 , w8) in a wire-by-wire fashion across
all : circuits, i.e. for each wire 6 ∈ Gwit ∪ Gout, they commit to the values x6 =

(G1,6 , . . . , G:,6) of the 6-th wire as com6 .

2. For each witness wire 6 ∈ Gwit, compute a PC proof for the binariness of x6 committed
in com6 , i.e. x6 ∈ {0, 1}: , where {0, 1} = ℳ̄ plays the role of the projective subspace.

3. For each gate output wire 6 ∈ Gout, compute a CFC proof for x6 committed in com6

being computed correctly with "6 w.r.t. the commitments of the input wires.

Instantiating the PCFC with the implicit PCFC for quadratic functions from [WW22] then
yields a BARG with proof size O(� · |C|), where the linear dependency on |C| is due to the
generation of commitments and proofs in a wire-by-wire fashion.6

Circuit-Succinct Compiler. Without going yet into formal details, one aspect of the
security proof of the basic compiler stands out as an obstacle for reducing the proof size
to be sublinear in |C|: The security reduction has to extract the values of all |C|wires in
one of the : circuits, and verify the functional proof of each of the gate functions. The
extractability of all |C|wires of a circuit information-theoretically implies that the BARG
proof necessarily has size linear in |C|.

Towards improving the proof size and online verification time from O(� · |C|) to
O(� · |w|), a crucial observation is that the security reduction does not necessarily need
to extract all |C|wires of (the 8∗-th copy of) the circuit C but only its input w8∗ . That is, if
the PCFC is expressive enough to support generation of CFC proofs for arbitrary circuits,
then the burden of checking that the circuit is evaluated correctly can be delegated to the

5 Although Waters and Wu presented the same intuition (obliviously using different terminologies than
PCFCs) when explaining their construction in [WW22], formally, they constructed the BARG directly in
terms of algebraic operations. This results in a construction with many intertwined components, making it
difficult to dissect and improve upon.

6 Here, we glossed over the detail that the somewhere extractability of the BARG obtained above is proven
based on another property of PCFC that we call functional extractability instead of projective chain binding.
We refer to Section 6.5 for details.
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prover. Based on this observation, we obtain the following circuit-succinct compiler, which
is detailed in Section 6.6.

Circuit-Succinct Compiler:

1. The prover PCFC-commits to the witness input wires of C(x8 , w8) across all : circuits, i.e.
for each witness input wire 6 ∈ Gwit, they commit to the values x6 = (G1,6 , . . . , G:,6) of
the 6-th wire as com6 .

2. For each witness wire 6 ∈ Gwit, compute a PC proof for the binariness of x6 committed
in com6 , i.e. x6 ∈ {0, 1}: , where {0, 1} = ℳ̄ plays the role of the projective subspace.

3. Compute a CFC proof for 5C (x6 : 6 ∈ Gstmt ∪ Gwit) = 1: where 5C consists of : parallel
copies of C .

Assuming that the commitments (com6)6∈Gwit and the CFC proof for 5C are sufficiently
succinct, we can conclude by inspection that the BARG is circuit-succinct, i.e. a proof is of
size O(� · |w|).

Security of the Circuit-Succinct Compiler. Assuming that the underlying PCFC is pro-
jective chain binding, we can prove that the above black-box compiler yields a somewhere-
extractable BARG. In the security experiment, we consider a trapdoored setup which
programs the PCFC commitment key so that it is projective on the subspace �8∗ defined
by the hidden index 8∗ of the BARG extractor. The set �8∗ contains the location of the
statement and witness of the 8∗-th instance, i.e. (x8∗ , w8∗). Recall that a BARG proof contains
commitments com6 for each witness input wire 6 ∈ Gwit across all : circuits, along with
their projection proofs. The security proof proceeds in two broad steps.7

1. Appeal to PC somewhere extractability for each com6 , which ensures the extraction of a
binary witness w8∗ ∈ {0, 1}ℓw and that ProjCom(td,x6) = Proj(td, com6) for each 6 ∈ Gwit.

2. Use projective chain binding to ensure that C(x8∗ , w8∗) = 1.

To explain the second step in more detail, in the case C(x8∗ , w8∗) = 0, we can construct a
reductionℬ from projective chain binding. For simplicity, let us ignore the statement wires
6 ∈ Gstmt (we can think of them being hardwired in 5C ) as they are not important for the
reduction. The reduction ℬ runs the malicious proverA to obtain the commitments com6

for all witness input wires 6 ∈ Gwit and a valid CFC proof � for 5C (x6 : 6 ∈ Gwit) = 1: .
Using the trapdoor td, ℬ can extract the 8∗-th witness w8∗ from the commitments com6 . It
then uses the extracted witness w8∗ together with dummy witnesses w8 = 0ℓw for the other
slots 8 ≠ 8∗ to compute the commitments (com′6)6∈Gwit together with another CFC proof
�′ for 5C (x′6 : 6 ∈ Gwit) = b for some b ∈ {0, 1}: with 18∗ = 0. By the correctness of the
PCFC, it must hold that Proj(td, com6) = Proj(td, com′6) for all 6 ∈ Gwit and that �′ is a
valid CFC proof. The reduction ℬ can thus output (com6 , com′6)6∈Gwit , comH , com′H ,�,�′

7 In our formal construction there is one more step handling the aggregation of commitments. We gloss over
this detail for now.
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where comH = Com(ck, 1:) and com′H = Com(ck, b). Naturally, this violates projective chain
binding as 18∗ = 0 and hence Proj(td, comH) ≠ Proj(td, com′H). We note that it is crucial in
the projective chain binding definition that the adversary is given the trapdoor td, since
the reduction ℬ above needs it to extract the witness w8∗ .

6.2.3 Algebraic PCFC from Pairings

To complete our circuit-succinct algebraic BARG construction, it remains to construct an
algebraic PCFC for circuits which is compatible with our compiler. Since explaining details
of the construction is tedious and does not help much in gaining intuition, we focus on
structural-level ideas and refer to Section 6.7 for the formal details.

Our construction is loosely based on two existing schemes that we introduced earlier
in the overview:

1. the implicit PCFC for separable quadratic functions extracted from theWaters-Wu BARG
[WW22], and

2. the projective functional commitment (PFC) scheme for circuits byWee andWu [WW24b],
which is the only existing algebraic FC for circuits with constant size proofs.

Unfortunately, these schemes are not readily available to fulfill the requirements of our
compiler. In particular, a major technical challenge is to achieve our projective chain
binding property in which the adversary gets access to the projection trapdoor. Notably,
this property is stronger than the chain binding of [WW24b] where the adversary only
sees the commitment key. Indeed, the Wee and Wu’s PFC construction cannot be proven
secure if the adversary has the trapdoor.

Melding Waters-Wu’s PCFC with Wee-Wu’s PFC. The PCFC implicit in Waters-Wu’s
BARG [WW22] andWee-Wu’s PFC [WW24b] each already satisfy some of our requirements.
In particular:

• Waters-Wu’s PCFC supports chainable functional proofs for separable quadratic func-
tions and allows to program the commitment key with a singleton set � = {8∗} at which
the committed message is extractable (given that it belongs to the projective subspace,
which in their case is the boolean set ℳ̄ = {0, 1}).

• Wee-Wu’s PFC supports non-chainable8 functional proofs for arbitrary circuits and allows
for projecting commitments on prefix sets � = {1, 2, . . . , 8∗}. The functional proofs are
built from several specialized proof sub-systems that prove linear and quadratic relations
between different types of commitments, ensuring consistency over the projective space.
However, the scheme is not extractable and cannot achieve projective chain binding.

Conveniently, both schemes are pairing-based and are similarly structured. Our first step
is therefore to meld these two schemes in a compatible way. At a high level, we proceed as
follows.
8 The authors discussed chainability but did not formalise the idea.
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• We redesign the Waters-Wu’s PCFC to embed it with a projective key that allow us
to reason about functional binding in the projective subspace. In the original scheme,
the size of the commitments is � + 1 group elements for a small parameter � (which
parameterizes the �-Lin assumption). This is sufficient for somewhere extractability, but
seems insufficient to reason about functional relations in the projective subspace. We
extend it to size 2�, where, intuitively, we need � group elements acting on the entire set
[ℓ ] for the normal-mode key and � group elements acting only on � for the projective
key.

• We structure the 2�-sized key to enable the generation of functional proofs for arbitrary
circuits, making it fully compatible with the proof sub-systems that compose the Wee-
Wu’s PFC.9

Overall, we obtain a PCFC which supports functional proofs for arbitrary circuits,
projecting commitments onto arbitrary (bounded cardinality) index sets � ⊆ [ℓ ], and
allows extraction at � ∩ � for commitments to subvectors given by � as long as |� ∩ �| = 1.
Note that although this PCFC is correct, it does not yet satisfy the projective chain binding
property. To satisfy this property, we design a novel functional proof system that partially
relies on two of the specialized proof sub-systems in the Wee-Wu’s PFC.

Achieving Projective Chain Binding. As mentioned above, the main technical challenge
that we tackle is to achieve projective chain binding against adversaries with access to
the projection trapdoor td. In more detail, in the reduction from the MDDH assumption
to projective chain binding, we need to employ a “sliding window” argument, which is
quite common in the BARG literature (e.g. [CJJ21, KLVW23]), where we gradually shift
the hidden index set � programmed in the trapdoor td from the input wires to the output
wires. However, without modifying the construction, this technique contradicts with the
requirement that the adversary is given access to td, since then the adversary can notice
that the hidden index set � changes.

To circumvent this issue, our construction introduces three commitment sub-keys
ck = (ck0 , ck1 , ck2)with their corresponding sub-trapdoors td0 , td1 , td2. The first key ck0

is the primary commitment key that is trapdoored to be projective at � (and which also
enables somewhere extractability). ck1 and ck2 are functional keys that correspond to
the so-called type-I and type-II commitments, respectively, which are required by the
functional proof sub-systems of theWee-Wu’s PFC. The idea is to hand td0 to the adversary,
while td1 and td2 are only used in the security proof and never given to the adversary.
Then, we can enable the “sliding window” argument only over ck1 and ck2, without ever
modifying ck0. To execute this idea, we have to augment the PCFC construction to include
additional consistency proofs between commitments generated against the primary key
ck0 and the functional keys ck1 , ck2.

9 In turn, this would enable us to support the functional proofs of the Wee-Wu’s PFC and obtain standard
CFC evaluation binding, although this is not our end goal.
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com = Com(ck0 ,x)

Com(ck2 , z) Com(ck1 , z)

comH = Com(ck0 , y)

�in , ?G �Quad , F

�Lin , 83�out , ?H

Figure 6.1: Overview of the sub-proofs and commitments involved in the PCFC functional proofs.

Constructing our Functional Proofs. In Figure 6.1 we give an overview of the functional
proofs and commitments involved in our PCFC construction. Recall that the end goal is to
prove the evaluation of a function 5 (interpreted as an arithmetic circuit) given an input
commitment com and an output commitment comH , both of which are committed under
ck0. For the description below, we let z ∈ ℳ

�� 5 �� be the computation trace of 5 (x). This is, z
contains the values of the

�� 5 �� circuit wires when 5 is evaluated on x. For simplicity, we
omit details related to 5 being a separable function that evaluates multiple copies of a
circuit, and refer only to the single-circuit case. The proof contains four main components:

• A linear map sub-proof �in that proves that a linear function B holds between com =

Com(ck0 ,x) and a type-II commitment Com(ck2 , z). The map B is a projection that maps
the first ℓ coordinates of the input (i.e., x) to the first ℓ coordinates of the output (i.e., the
prefix of z corresponding to the input).

• A linear map sub-proof �Lin for the identity function id between the type-I commitment
Com(ck1 , z) and the type-II commitment Com(ck2 , z).

• A quadratic map sub-proof �Quad for the next wire function F, which given the first C
coordinates of z (i.e., the first C wires of 5 (x)), computes the C + 1-th gate output wire.
This is done between the type-II commitment Com(ck2 , z) and the type-I commitment
Com(ck1 , z).

• Finally, a sub-proof �out that proves an output-projection map ? which maps the last ℓ
coordinates of z to the first ℓ coordinates of y, which is done between Com(ck2 , z) and
comH = Com(ck0 , y).

At a high level, the proof of projective chain binding goes as follows. The sub-proof
�in allows one to ensure matching projections between the input commitment com and
the type-II commitment Com(ck2 , z) on the first ℓ coordinates (i.e., � = [ℓ ]). Then, �Lin and
�Quad enable a sliding window argument where � gradually increases from [ℓ ] to [

�� 5 ��],
ensuring matching projections of their respective commitments. Finally, �out ensures that
the projection (onto [ℓ ]) of the output commitment comH matches the projection over the
last ℓ coordinates of the type-II commitment Com(ck2 , z). We refer to Section 6.7 for the
details.
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6.2.4 Summary

The techniques introduced above lead to a construction of PCFC over pairing groups that
we summarize in the following (simplified) theorem:

Theorem 6.33 (simplified). Assuming the Ker-DH assumption and the MDDH assumption
over bilinear groups, the construction PCFC satisfies:

• Somewhere extractability for a message space ℳ̄ = {0, 1} if the subvector set � and the projective
set � satisfy |� ∩ �| = 1.

• Projective chain binding for the class of functions ℱ:,ℓC which evaluate up to : parallel circuits
C8 , each of size at most ℓC .

• The commitment key size and the worst-case prover running time are O
(
� · :5 · ℓ5

C

)
.

• Commitments and proofs have size O(�).

• Efficient verification runs in time O(�).

Overall, by combining the PCFC with the circuit-succinct compiler, we obtain a fully
algebraic construction of BARGs from bilinear pairings, which we summarize as follows:

Corollary 6.34. Under the assumptions of Theorem 6.33, there exists an algebraic somewhere
extractable BARG for NP such that:

• The setup size |crs| and the prover running time are O
(
� · :5 · ℓ5

C

)
.

• The proof size is |�| = O(� · |w|·).

• Efficient verification runs in time O(� · |w|).

Our BARG construction is almost concretely efficient, in the sense that all complexity
measures are explicitly expressible. In particular, the resulting online verification time and
proof size are O(� · |w|) with small constants. The main efficiency bottleneck that remains
is the size of the commitment key, which also impacts the prover time. We therefore see
shrinking the commitment key size as one of the next immediate future directions.

6.3 Preliminaries and Circuit Model

6.3.1 Standard Assumptions on Bilinear Groups

We recall the matrix Diffie-Hellman assumption (MDDH) and the kernel Diffie-Hellman
assumption (KerDH), which we adapt from [MRV16]. For MDDHwe directly introduce the
bilateral variant where the challenge is encoded in both G1 and G2, following the notation
from [GZ21, WW24b].

Definition 6.1 (Kernel Diffie-Hellman Assumption). Let bgp = (@,G1 ,G2 ,G) , [1]1 , [1]2) be
a bilinear group setting and let �, ℓ , 3 ∈ N. We say that the kernel Diffie-Hellman assumption
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KerDH�,ℓ holds inG1 for bgp if for any PPT adversaryA, there exists a negligible function negl(�)
such that

Pr

[
Ax = 0 ∧ x ≠ 0

����� A←$ F�×ℓ@

[x]2 ←A(bgp, [A]1)

]
= negl(�).

where the probability is taken over the choice of A←$ F�×ℓ@ and the adversaryA’s random coins.
We define KerDH�,ℓ over G2 analogously.

Definition 6.2 (Matrix Diffie-Hellman Assumption). Let bgp = (@,G1 ,G2 ,G) , [1]1 , [1]2)
be a bilinear group setting and let �, ℓ , 3 ∈ N. We say that the (bilateral) Matrix Diffie-Hellman
assumptionMDDH�,ℓ ,3 holds over bgp if for any PPT adversaryA, there exists a negligible function
negl(�) such that����� Pr [A(bgp, [A]1 , [A]2 , [S · A]1 , [S · A]2) → 1]

− Pr [A(bgp, [A]1 , [A]2 , [U]1 , [U]2) → 1]

����� ≤ negl(�),

where the probability is taken over the choice of A ←$ F�×ℓ@ , S ←$ F3×�@ ,U ←$ F3×ℓ@ and the
adversaryA’s random coins.

6.3.2 Batch Arguments for NP

A Batch Argument for NP (BARG) is a proof system for a particular subclass of NP, which
is the conjunction of : NP statements corresponding to the same NP language. More
precisely, given an NP languageℒ, the prover attests that : statements x1 , . . . , x: belong to
ℒ. In terms of efficiency, BARGs produce proofs � whose size is sublinear in the number
of instances :. As opposed to SNARGs, the size of a BARG proof is only required to
be sublinear in :, but could be linear in the size of the circuit C(x8 , w8) that decides the
language given an input x8 and an NP witness w8 .

We adopt the notion of (somewhere extractable) BARGs for circuit satisfiability from
[CJJ22, KLVW23], where we generically consider circuits C : ℳℓx,w → ℳ. Such BARGs
have two security properties. The first is setup indistinguishability: one can sample a
trapdoored BARG crs at some index 8∗, but this should be indistinguishable from a non-
trapdoored crs. The second is somewhere extractability: given a valid proof for x1 , . . . , x:
on a crs trapdoored at 8∗, the trapdoor allows one to extract a valid witness w∗ such that
C(x8∗ , w∗) = 1.

Definition 6.3 (BARG for NP [CJJ22, KLVW23]). Let statement length ℓx = poly(�) and witness
length ℓw = poly(�) be fixed. A somewhere extractable batch argument (BARG) for NP is a tuple of
algorithms BARG = (Setup,Prove,Ver, SetupTd, Ext):

Setup(1� , 1: , 1ℓC ) → crs : on input the security parameter �, a number of instances :, a circuit
size ℓC , a statement length ℓx, and a witness length ℓw, outputs a common reference string crs.
Below, we implicitly assume that circuits C :ℳℓx,w →ℳ are of size ℓC , statements x ∈ ℳℓx ,
and witnesses w ∈ ℳℓw .

Prove(crs,C , {(x8 , w8)}8∈[:]) → � : on input the common reference string crs, a circuit C , and a
batch of input-witness pairs {(x8 , w8)}8∈[:], outputs a proof �.
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Ver(crs,C , {x8}8∈[:] ,�) → 1 : on input crs, a circuit C of size ℓC , a batch of statements {x8}8∈[:],
and a proof �, accepts (1 = 1) or rejects (1 = 0).

SetupTd(1� , 1: , 1ℓC , 8∗) → (crs, td) works as Setup, and additionally outputs a trapdoor td asso-
ciated to the index 8∗ that is given as input.

Ext(td,C , {x8}8∈[:] ,�) → w∗ On input a trapdoor td, a circuit C , a batch of statements {x8}8∈[:]
and a proof �, outputs a witness w∗ corresponding to the position specified by the trapdoor.

A BARG must satisfy the following properties:

Completeness. For any �, :, ℓC ∈ N, any circuit C , all statement-witness pairs (x8 , w8)8∈[:] such
that C(x8 , w8) = 1 for all 8 ∈ [:], crs ∈ Setup(1� , 1: , 1ℓC ) and � ∈ Prove(crs,C , {(x8 , w8)}8∈[:]),
it holds that Ver(crs,C , {x8}8∈[:] ,�) = 1.

Succinctness. For any admissible set of parameters as before, |�| ≤ poly(�, log :, ℓC ). Further-
more, we say that BARG is circuit-succinct if |�| ≤ poly(�, log :, ℓw).

Setup Indistinguishability. For any PPT adversaryA, any :, ℓC = poly(�), and index 8∗ ∈ [:],
the distributions of crs induced by (crs, td) ← SetupTd(1� , 1: , 1ℓC , 8∗) and crs← Setup(1� , 1: , 1ℓC )
are computationally indistinguishable.

Somewhere Extractability. For any PPT adversaryA, any :, ℓC = poly(�), and index 8∗ ∈ [:],

Pr


Ver(crs,C , {x8}8∈[:] ,�) = 1

∧ C(x8∗ , w∗) ≠ 1

��������
(crs, td) ← SetupTd(1� , 1: , 1ℓC , 8∗)
(C , {x8}8∈[:] ,�) ← A(crs)
w∗ ← Ext(td, {x8}8∈[:] ,C ,�)

 ≤ negl(�).

Remark 6.4. One can also consider parametric notions of succinctness for BARGs following a
similar notation as for functional commitments in Theorem 4.1, where there exists a function BBARG

such that |�| ≤ BBARG(�, :, ℓC ). We will use this notation in Chapter 7.

Definition 6.5 (Efficient Verification for BARG). ABARG for NPBARG has efficient verification
with preprocessing (also called split verification in [WW22]) if there exists a pair of algorithms:

PreVer(crs,C , {x8}8∈[:]) → vk : On input the common reference string crs, a circuitC , and a batch
of : statements {x8}8∈[:], it creates a succinct verification key vk such that |vk| ≤ poly(�, log :, ℓC )

EffVer(vk,�) → 1 On input the succinct verification key vk and a proof �, accepts (1 = 1) or
rejects (1 = 0) in time bounded by poly(�, log :, ℓC ).

Furthermore, if for ℓC ≤ 2poly(�) the size of the verification key |vk| and the runtime of EffVer(vk,�)
are bounded by poly(�, log :, ℓw), we say that BARG has a circuit-succinct verification with prepro-
cessing.

Remark 6.6. In Theorem 6.5 we consider a stronger notion of efficient verification where the
circuit C can be preprocessed by PreVer. This allows us to define the circuit-succinct verifier where
the verifier runtime is sublinear in |C|. In prior definitions (e.g. [WW22]), the circuit C is not
preprocessed by PreVer but is instead passed as an input to EffVer. In this case, it is impossible for
the online verifier to have circuit-succinctness.
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6.3.3 Circuit model

Throughout this work, we model circuits C :ℳℓx,w →ℳ, where ℓx,w = ℓx + ℓw, to take as
input a statement x ∈ ℳℓx and a witness w ∈ ℳℓw , for somemessage spaceℳ of cardinality
|ℳ| ≤ 2poly(�). A circuit can be arithmetic (e.g. ℳ = Z@) or Boolean (i.e. ℳ = {0, 1}).
A circuit supports arbitrary fan-in and fan-out arithmetic (resp. Boolean) gates overℳ.
We adopt the convention that 1 ∈ ℳ and we say that an input (x, w) is accepted by C if
C(x, w) = 1.

We measure the size of a circuit by its total number of wires ℓC , which includes the
statement and witness input wires, as well as the output wire. We associate each wire to
the output of a gate 6 ∈ [ℓC ]. For notational convenience, and such that the number of
gates and that of wires are both ℓC , we consider that all inputs come from an “input gate”
6 ∈ [ℓx,w] which simply outputs the hardwired 6-th input. Given a circuit computation
C(x, w), the value of the 6-thwire (or the output of the 6-th gate) is denoted by G6 . Each gate
6 ∈ [ℓC ] computes a function "6 :ℳ

��)6 �� →ℳ on an arbitrary set of input wires denoted
by )6 . Each gate has a single output wire, even if this can be input to multiple other gates.
Finally, note that "6 is a quadratic map, as it represents a single gate computation on a
Boolean or arithmetic circuit.

To be descriptive, we use G = [ℓC ] = Gstmt ∪ Gwit ∪ Gout to denote the set of all
gates/wires partitioned into statement, witness, internal and output wires respectively.
More precisely, we enumerate the circuit gates and wires as follows:

• Gstmt B {1, . . . , ℓx} are the input wires corresponding to the values in x.

• Gwit B {ℓx + 1, . . . , ℓx,w} are the input wires corresponding to the values in w.

• Gout B {ℓx,w + 1, . . . , ℓC} correspond to the output wires of all (non-input) gates. We
arrange these gates that the 6-th gate only takes input wires corresponding to smaller
indices, namely )6 ⊆ [6 − 1].

We note that the subscripts in ℓC , ℓx, ℓw, Gstmt, Gwit, Gout, etc. are symbolic, e.g. ℓC
should not be thought of as a function of a circuit C . We sometimes abuse notation and
write ℓC = |C|, ℓx = |x|, ℓw = |w|, etc. to denote the quantities.

6.4 Projective Chainable Functional Commitments

We define several variants of commitments, in particular projective chainable functional
commitments (PCFC), and their properties. Recall from Theorem 3.1 that we allow the
commitment scheme algorithms to input an index set � ∈ J ⊆ 2[ℓ ] to refer to subvectors
x ∈ ℳ� .

6.4.1 Projective Commitments (PC)

In [WW24b], Wee and Wu introduce the notion of projective commitments. We generalise
their notion to allow for arbitrary projective subspaces, but not only prefixes, along with

119



6. Circuit-Succinct Algebraic Batch Arguments for NP

the flexibility of committing to subvectors. We adopt the notation that ℐ is a family of
admissible index sets � ∈ ℐ ∈ 2[ℓ ]. We write x� to refer to a subvector ofℳℓ that contains
only the coordinates in �, namely x� ∈ ℳ� .

Definition 6.7 (Projective Commitments (PC)). Let ℐ ,J be families of index sets parametrised
by ℓ ∈ N. A projective commitment (PC) scheme for (ℐ ,J ) consists of a commitment scheme
(Setup,Com) for J and additional PPT algorithms (ProjSetup,ProjCom,Proj) with the following
syntax:

ProjSetup(1� , 1ℓ , �) → (ck, td): On input the security parameter �, vector length ℓ , and index set
� ∈ ℐ , output a commitment key ck and a trapdoor td.

ProjCom(td, � ,x) → pcom: On input the trapdoor td, an index set � ∈ J and a vector x ∈ ℳ�∩� ,
output a projective commitment pcom.

Proj(td, com) → pcom: On input the trapdoor td and a commitment com, output a projective
commitment pcom.10

The index set � is taken as � = [ℓ ] when omitted. A PC must satisfy the following properties:

Projection Correctness. For any index sets � ∈ ℐ , � ∈ J , any vector x ∈ ℳ�∩� , and any
(ck, td) ← ProjSetup(1� , 1ℓ , �), then Pr[Proj(td,Com(ck, � ,x)) = ProjCom(td, � ,x)] = 1.

Setup Indistinguishability. For any PPT adversaryA, and subspace � ∈ ℐ , the distributions
of ck induced by (ck, td) ← ProjSetup(1� , 1ℓ , �) and ck ← Setup(1� , 1ℓ ) are computationally
indistiguishable.

Extending the notion of aggregatability, we define the notion of projective aggregata-
bility which states that not only ordinary commitments but also projective commitments
are aggregatable.

Definition 6.8 (PC Projective Aggregatability). APC (Setup,Com,ProjSetup,ProjCom,Proj)
for (ℐ ,J ) is projective aggregatable if, given Ĵ ⊂ J ,

• (Setup,Com) is aggregatable with an aggregation algorithm Agg,

• there exists a projective aggregation algorithm ProjAgg(ck, (pcom�)�∈Ĵ ) → pcom inputting the
commitment key ck and tuples of projective commitments (pcom�)�∈Ĵ and outputs a projective
commitment pcom,

• if � ∩ �′ = ∅ for all distinct � , �′ ∈ Ĵ , then for any � ∈ ℐ and any x� ∈ ℳ�∩� for � ∈ Ĵ , the
following property is satisfied:

Pr


ProjAgg(ck, (pcom�)�∈Ĵ ) = pcom

���������
(ck, td) ← ProjSetup(1� , 1ℓ , �)
pcom� ← ProjCom(td, � ,x�) ∀� ∈ Ĵ

pcom← ProjCom
(
ck,

⋃
�∈Ĵ � ,

⋃
�∈Ĵ x�

)

= 1.

10Note that we define Proj not to input the (alleged) index set � of the commitment com. This leads to stronger
properties related to projection. Clearly, the syntax and properties can be relaxed to allow Proj input �.
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Remark 6.9 (Projection commutativity). Projection correctness (Theorem 6.7) and projective ag-
gregatability (Theorem 6.8), which implies aggregatability (Theorem 3.5), together imply “projection
commutativity”. In more detail, suppose

com� = Com(ck, � ,x�), pcom� = ProjCom(td, � ,x�),

com = Com
(
ck,

⋃
�∈Ĵ � ,

⋃
�∈Ĵ x�

)
, and pcom = ProjCom

(
td,

⋃
�∈Ĵ � ,

⋃
�∈Ĵ x�

)
.

The above three properties imply the following:

• projection correctness: Proj(td, com�) = pcom� and Proj(td, com) = pcom.

• aggregatability: Agg(ck, (com�)�∈Ĵ ) = com.

• projective aggregatability: ProjAgg(ck, (pcom�)�∈Ĵ ) = pcom.

Putting the above together, we obtain

ProjAgg(ck, (Proj(td, com�))�∈Ĵ ) = Proj(td,Agg(ck, (com�)�∈Ĵ )).

For certain message subspaces ℳ̄ ⊂ ℳ and vectors x ∈ ℳ̄ℓ , it might be possible to
augment a projective commitment scheme with an embedded proof system that provides
somewhere extractability. It means that, if the commitment key is extractable at set � and
an adversary provides a commitment com and a proof � that verifies, then one can extract
a subvector x� ∈ ℳ̄� such that Proj(td, com) = ProjCom(td,x�) except with negligible
probability.

To illustrate this property, consider the example of a commitment scheme such that
the message spaceℳ = F@ for a prime @ > 2. Moreover, the commitment supports an
embedded “booleanity” proof that ensures that a committed value x satisfies G8(G8 − 1) =
0 ∀8 ∈ [ℓ ], namely that G8 ∈ {0, 1} = ℳ̄. Then, our somewhere extractability notion ensures
that we can extract a vector x� ∈ {0, 1}� .

Definition 6.10 (PC Somewhere Extractability). Let ℐ ,J be index sets families parametrised by
ℓ ∈ N and ℳ̄ ⊂ ℳ be a message subspace. A somewhere extractable PC for (ℐ ,J , ℳ̄) consists of
a PC for (ℐ ,J ) and additional PPT algorithms (ProjProve,ProjVer,ProjExt) with the following
syntax:

ProjProve(ck, � ,x) → �: On input the commitment key ck, an index set � ∈ J and a vector
x ∈ ℳ� , output a subspace proof �.

ProjVer(ck, � , com,�) → 0/1: On input the commitment key ck, an index set � ∈ J , a commit-
ment com and a subspace proof �, accepts or rejects.

ProjExt(td, � , com) → x: On input the trapdoor td, an index set � ∈ J and a commitment com,
outputs a value x ∈ ℳ̄�∩� ∪ {⊥}.

Moreover, these algorithms must satisfy the following properties:

Succinctness. For any honestly generated commitment key ck, index set � ∈ J and vector
x ∈ ℳ� , a projection proof � ∈ ProjProve(ck, � ,x) satisfies |�| ≤ poly(�, log ℓ , log |�|).
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Somewhere Completeness. For any index sets � ∈ ℐ and � ∈ J and any vector x ∈ ℳ� :

Pr

ProjVer(ck, � , com,�) = 1

��������
(ck, td) ← ProjSetup(1� , 1ℓ , �)
com← Com(ck, � ,x)
�← ProjProve(ck, � ,x)

 = 1.

Somewhere Extractability. For any PPT11 adversary A and index set � ∈ ℐ , the advantage
Advse

PCFC,A(�) defined below is negl(�):

Pr


ProjVer(ck, � , com,�) = 1

∧
(
ProjCom(td, � ,x) ≠ Proj(td, com) ∨ x ∉ ℳ̄�∩� )

�����������
(ck, td) ← ProjSetup(1� , 1ℓ , �)
(� , com,�) ← A(ck)
x← ProjExt(td, � , com)
� ∈ J


.

Remark 6.11 (Somewhere extractability for aggregated commitments.). Naturally, the above
definition of somewhere extractability (Theorem 6.10) can be extended to aggregated commitments.
If com = Agg(ck, (com�)�∈Ĵ ) for some non-overlapping family Ĵ ⊂ J , then it follows that
ProjExt(td,⋃�′∈Ĵ � , com) = ⋃

�∈Ĵ ProjExt(td, �′, com�). This may enable extraction on aggre-
gated commitments com where running the extractor ProjExt on com directly is not possible, such
as when � ∩ � is too large.

Definition 6.12 (PC Efficient Verification). A somewhere extractable PC admits efficient verifi-
cation with preprocessing if there exists a pair of algorithms:

PreProjVer(ck, �) → ck� on input the commitment key ck and an index set � ∈ J , outputs a
projective key ck� of size |ck� | ≤ poly(�, log ℓ , log |�|).

EffProjVer(ck� , com,�) → 1 ∈ {0, 1} on input a projective key ck� , a commitment com, and a
projection proof �, accepts (1 = 1) or rejects (1 = 0) in time bounded by poly(�, log ℓ , log |�|).

Furthermore, the following function equivalence holds:

ProjVer(ck, � , com,�) ≡ EffProjVer(PreProjVer(ck, �), com,�).

6.4.2 Projective Chainable Functional Commitments (PCFC)

We consider projective commitments that also admit the syntax of chainable functional
commitments (Theorem 4.8). We call these commitments projective chainable functional
commitments (PCFC).

Definition 6.13 (Projective Chainable Functional Commitment (PCFC)). A (somewhere
extractable) projective CFC ((se-)PCFC) for a class of functions ℱ , families of admissible index

11The property may also hold statistically against unbounded adversaries.
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sets (ℐ ,J ) (and a message subspace ℳ̄) is a tuple of PPT algorithms consisting of some shared
Setup,Com and

(

se-PC for (ℐ ,J , ℳ̄)︷                                                                  ︸︸                                                                  ︷
ProjSetup,ProjCom,Proj︸                          ︷︷                          ︸

PC for (ℐ ,J )

, (ProjProve,ProjVer,ProjExt), FuncProve, FuncVer︸                   ︷︷                   ︸
CFC for (ℱ ,J )

).

Definition 6.14 (PCFC Efficient Verification). A PCFC admits efficient verification with pre-
processing if the underlying CFC and PC admit efficient verification with preprocessing, i.e. there
exists additional algorithms (PreFuncVer, EffFuncVer,PreProjVer, EffProjVer) with properties
defined in Theorems 4.10 and 6.12.

We introduce the two main security notions for PCFC: functional extractability and
projective chain binding. To define these notions, we first introduce separable functions.

Definition 6.15 (Separable Function). Let �1 , . . . , �ℓ , �H ⊆ [ℓ ]. We say that a function 5 :∏
8∈[<]ℳ�8 → ℳ�H is � = (�1 , . . . , �ℓ , �H)-separable whenever the coordinates in �H ∩ �H of the

output vector only depend on the coordinates in �8∩ �8 of each of the 8-th input vectors. The restriction
of 5 to � is denoted by 5� :

∏
8∈[<]ℳ�8∩�8 →ℳ�H∩�H . For a class of functions ℱ , we write ℱ� for

the set of functions 5 ∈ ℱ that are �-separable. If 5 is �-separable for all � ∈ ℐ ℓ+1 for some set ℐ , we
say that 5 is ℐ -separable. If �1 = . . . = �ℓ = �H , we abuse notation and write � = �1 = . . . = �ℓ = �H .

Example 6.16. The function 5 : Z2 × Z2 → Z2 given by 5 ((G1 , G2), (H1 , H2)) = (G1 + H1 , G1 +
G2 + H2) is ℐ -separable for ℐ = {{1}, {1, 2}}.

Intuitively, a PCFC is functional extractable if, given a CFC opening � for a separable
function 5 , then the extracted values from the commitments are guaranteed to evaluate 5�
correctly.

Definition 6.17 (PCFC Functional Extractability). A somewhere extractable PCFC satisfies
functional somewhere extractability for a class of ℐ -separable functions ℱ and index set families
(ℐ ,J ) if for any PPT adversaryA and set � ∈ ℐ , the advantage Advfe

PCFC,A(�) defined below is
negl(�):

Pr



FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) = 1

∧ 5�(x1 , . . . ,x<) ≠ y

∧ 5 ∈ ℱ�

�������������������

(ck, td) ← ProjSetup(1� , 1ℓ , �)
( 5 , (com8)8∈[<] , comH ,�) ← A(ck)
5 :

∏
8∈[<]ℳ�8 →ℳ�H

x8 ← ProjExt(td, �8 , com8) ∀8 ∈ [<]
y← ProjExt(td, �H , comH)
x8 ∈ ℳ�∩�8 ∀8 ∈ [<]
y ∈ ℳ�∩�H


.

Remark 6.18. Due to the somewhere extractability of PC (Theorem 6.10), an alternative way of
defining Functional Extractability for PCFC is to let the adversary output x8 and y, and to let the
experiment run Proj instead of ProjExt.
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Finally, we introduce projective chain binding for PCFC which generalises evaluation
binding (Theorem 4.9). In particular, if a PCFC for a class of ℐ -separable functions ℱ and
index set families (ℐ ,J ) is projective chain binding, where ℐ contains [ℓ ], then the PCFC
is also evaluation binding for ℱ .

Definition 6.19 (PCFC Projective Chain Binding). A PCFC for a class of ℐ -separable functions
ℱ and index set families (ℐ ,J ) satisfies projective chain binding if for any PPT adversaryA and
set � ∈ ℐ , the advantage Advpcb

PCFC,A(�) defined below is negl(�).

Pr



Proj(td, comH)
≠ Proj(td, com′H)

∧ 5 ∈ ℱ�

��������������

(ck, td) ← ProjSetup(1� , 1ℓ , �)
( 5 , (com8 , com′8)8∈[<] , comH , com′H ,�,�′) ← A(ck, td)
FuncVer(ck, (com8)8∈[<] , comH , 5 ,�) = 1

FuncVer(ck, (com′8)8∈[<] , com′H , 5 ,�′) = 1

Proj(td, com8) = Proj(td, com′8) ∀8 ∈ [<]


.

Note that the adversary not only gets access to the commitment key ck, but also to the
projection trapdoor td. One may consider a weaker variant where td is not given to the
adversary.

On functional extractability, projective chain binding, and partial input soundness.
Partial input soundness [KLVW23] is a security notion that arises in the context of RAM
SNARGs, more specifically in flexible RAM SNARGs. A flexible RAM SNARG with partial
input soundness intuitively guarantees soundness if some part of the RAM memory
can be extracted from the hash of the memory tape, as long as the RAM computation
depends only on the part that was extracted. The notion is defined with respect to a
somewhere extractable hash function that is programmed on a memory part �. Then,
partial input soundness is stated roughly as follows: given a somewhere extractable hash
key programmed on �, it is hard for any adversary to output a valid SNARG proof � and
a hash digest rt such that the RAM machine ℛ reads only � and the extracted x� satisfies
that ℛ(x�) = 0.

Functional extractability (Theorem 6.17) and partial input soundness are essentially
the same property in different environments, as both notions refer to local computations
where a part of the input can be extracted. Their main differences are the following two.
First, functional extractability is not defined with respect to any external building block
such as a somewhere extractable hash function, as it is an intrinsic property of PCFC
schemes. Second, the property is defined for separable functions over circuits, instead of
RAM machines that read only a part of their memory tape.

On the other hand, projective chain binding (Theorem 6.19) is a stronger notion than
both functional extractability and partial input soundness, as it must hold even if the
adversary knows the trapdoor of the scheme. Moreover, projective chain binding holds for
projections, which may or may not be (somewhere) extractable. In case the projected input
commitments are indeed extractable, it is not hard to see that projective chain binding
implies functional extractability.
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Setup(1� , 1: , 1ℓC )
ck← PCFC.Setup(1� , 1:)
return crs B ck

SetupTd(1� , 1: , 1ℓC , 8∗)
(ck, td) ← PCFC.ProjSetup(1� , 1: , 8∗)
return (crs, td) B (ck, td)

Ext(td,C , {x8}8∈[:] ,�)
w8∗ ,6 ← PCFC.ProjExt(td, com6) ∀6 ∈ Gwit

return w8∗ B (w8∗ ,6)6∈Gwit

Prove(crs,C , {(x8 , w8)}8∈[:])
("6)6∈Gout ← C
G8,6 B "6(G8 , 9 : 9 ∈ )6) ∀8 ∈ [:], 6 ∈ Gout

x6 B (G1,6 , . . . , G:,6) ∀6 ∈ Gout

com6 ← PCFC.Com(ck,x6) ∀6 ∈ Gwit ∪ Gout

�16 ← PCFC.ProjProve(ck,x6) ∀6 ∈ Gwit

�"
6 ← PCFC.FuncProve(ck, (xC)C∈)6 , 5"6 )
∀6 ∈ Gout

� B ((com6)6∈Gwit∪Gout , (�16)6∈Gwit , (�
"
6 )6∈Gout)

return �

Ver(crs,C , {x8}8∈[:] ,�)
("6)6∈Gout ← C
x6 B (G1,6 , . . . , G:,6) ∀6 ∈ Gstmt

com6 ← PCFC.Com(ck,x6) ∀6 ∈ Gstmt

assert PCFC.ProjVer(ck, com6 ,�
1
6) = 1

∀6 ∈ Gwit

assert PCFC.FuncVer(ck, (com8)8∈)6 ,
com6 , 5"6 ,�

"
6 ) = 1 ∀6 ∈ Gout

return 1

PreVer(crs,C , {x8}8∈[:])
("6)6∈Gout ← C
x6 B (G1,6 , . . . , G:,6) ∀6 ∈ Gstmt

com6 ← PCFC.Com(ck,x6) ∀6 ∈ Gstmt

ck[:] ← PCFC.PreProjVer(ck, [:])
ck6 ← PCFC.PreFuncVer(ck, 5"6 )
∀6 ∈ Gout

vk B ((com6)6∈Gstmt , ck[:] , (ck6)6∈Gout)
return vk

EffVer(vk,�)
assert PCFC.EffProjVer(ck[:] , com6 ,�

1
6)

∀6 ∈ Gwit

assert PCFC.EffFuncVer(ck6 , (com8)8∈)6 ,
com6 ,�

"
6 ) ∀6 ∈ Gout

return 1

Figure 6.2: Basic Compiler from PCFC to BARG.

6.5 Wire-by-Wire Compiler: From Functional Extractability to
BARGs

We provide a generic compiler to build a BARG for NP from somewhere extractable
projective chainable funcitonal commitments (se-PCFC), as defined in Section 6.4. Our
compiler can be seen as an abstraction of the construction by Waters and Wu [WW22].
The resulting BARG can evaluate circuits C : ℳ̄ℓ → ℳ̄ with arbitrary gates, proving
that C(x8 , w8) = 1 for every 8 ∈ [:]. Notably, the compiler only makes black-box use of the
underlying PCFC. Therefore, if the PCFC is algebraic, so does the resulting BARG.
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6.5.1 Compiler construction

Our compiler is described in Figure 6.2. Given a quadratic gate function " : ℳ̄< → ℳ̄
for (arithmetic or Boolean) circuits C : ℳ̄ℓx,w → ℳ̄, we define 5" : ℳ̄:·< → ℳ̄: as
5"(x1 , . . . ,x:) = ("(x1), . . . , "(x:)). Namely, 5" is a :-separable function that runs " in
parallel : times, and such that < < ℓC . The compiler turns a PCFC which 1) supports the
functions 5", 2) is somewhere extractable and 3) is functional extractable into a BARG for
NP. The formal requirements and implication are stated in the following Theorem 6.20.
Note that in our construction the crs is independent of the circuit size ℓC .

Theorem 6.20 (Basic Compiler). Let ℐ B {{8} : 8 ∈ [:]} (i.e. singletons of indices in [:]),
ℳ̄ ⊇ {0, 1} be some message space, PCFC be a projective chainable functional commitment scheme
(Theorem 6.13) for the ℐ -separable functions ℱ = { 5" : ℳ̄:·< → ℳ̄: : " is a gate function}
which satisfies

• (Theorem 6.10) somewhere extractability for (ℐ , ℳ̄) and

• (Theorem 6.17) functional extractability for (ℱ , ℐ ).

Then, the constructionBARG in Figure 6.2 is a somewhere extractable batch argument (Theorem 6.3)
for NP whose proof size is |�| = ℓC · |com| + ℓw · |�1| + (ℓC − ℓx,w) · |�"| where �1 is a PC subspace
proof, and �" is a PCFC functional proof for 5 ∈ ℱ . Moreover, BARG admits efficient verification
with preprocessing (Theorem 6.5).

Proof. The completeness, succinctness and setup indistinguishability of BARG follow by
inspection, given the correctness, succinctness and setup indistinguishability of PCFC. The
somewhere extractability of BARG follows from Theorem 6.21. Its efficient verification
property follows from Theorem 6.24.

�

In the remainder of the section, we prove somewhere extractability in Section 6.5.2 and
efficient verification in Section 6.5.3.

6.5.2 Proof of somewhere extractability

Lemma 6.21. Let PCFC and BARG be as defined in Theorem 6.20. It holds that BARG has
somewhere extractability.

Proof. Weproceed by a series of hybrid gamesHyb0 ,Hyb1,0 , . . . ,Hyb1,ℓw ,Hyb2,0 , . . . ,Hyb2,ℓout

which progressively include additional winning conditions. The formal descriptions of
the games are given in Figure 6.3 with explanations given below.

Hyb0: This is the standard somewhere extractability game (Theorem 6.3) with the algo-
rithms in BARG inlined. To recall, in this game the adversary outputs a proof � and
the experiment runs w8∗ ← BARG.Ext(td,C , {x8}8∈[:] ,�). The adversary wins if the proof
verifies yet C(x8∗ , w8∗) ≠ 1.
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Hyb0
A(�):

(ck, td8∗) ← PCFC.ProjSetup(1� , 1: , 8∗)
(C , {x8}8∈[:] ,�) ← A(ck)
com6 ← PCFC.Com(ck, (G1,6 , . . . , G:,6)) ∀6 ∈ Gstmt

G∗6 ← PCFC.ProjExt(td, com6) ∀6 ∈ Gwit

w∗ B (G∗6)6∈Gwit

assert comℓC = PCFC.Com(ck, 1:)
assert PCFC.ProjVer(ck, com6 ,�16) = 1 ∀ 6 ∈ Gwit

assert PCFC.FuncVer(ck, (com8)8∈)6 , com6 , 5"6 ,�
"
6 ) = 1 ∀ 6 ∈ Gout

assert C(x8∗ , w∗) ≠ 1

return 1

Hyb1, 9
A (�), 0 ≤ 9 ≤ ℓw:

// identical to Hyb0
A(�) until before “return 1”

assert G∗6 ∈ ℳ̄ ∀6 ∈ Gwit ∩ [ℓx + 9]
assert PCFC.ProjCom(td8∗ , G∗6) = PCFC.Proj(td8∗ , com6) ∀6 ∈ Gwit ∩ [ℓx + 9]

return 1

Hyb2, 9
A (�), 0 ≤ 9 ≤ ℓout:

// identical to Hyb1,ℓw
A (�) until before “return 1”

x∗ ←Wires(C , x8∗ , w∗)
assert G∗6 = PCFC.ProjExt(td8∗ , com6) ∀6 ∈ Gout ∩ [ℓx,w + 9]

return 1

Figure 6.3: Games Hyb0 ,Hyb1, 9 ,Hyb2, 9 for the proof of BARG somewhere extractability. We highlight
changes between games. We define the function x←Wires(C , x8 , w8) to output the value of all the internal
values of a circuit computation C(x8 , w8). Namely, G 9 ← "9((GC)C∈)9 ) where the initial values are given by
x = x8|w8|0 and x is recomputed iteratively ∀9 ∈ [#].

Hyb1, 9 : Hyb1,0 is identical to Hyb0. In Hyb1, 9 , the game additionally checks that the first 9
entries of the extracted witness, i.e. those indexed by 6 belonging to the first 9 values in
Gwit, resides in the message subspace ℳ̄, i.e. G∗6 ∈ ℳ̄ℓw , and that they are consistent with
the projected commitments, i.e. PCFC.ProjCom(td8∗ , G∗6) = PCFC.Proj(td8∗ , com6).

Hyb2, 9 : Hyb2,0 is identical to Hyb1,ℓw . To define the rest of the games, we let x∗ ∈ ℳ̄ℓC be
the (honestly computed) values of the circuit wires of instance 8∗ that result from the
evaluation of C(x8∗ , w∗). Note that x∗ is guaranteed to satisfy w∗ ∈ ℳ̄ℓw by the winning
condition. In Hyb2, 9 , the game additionally checks that G∗6 = PCFC.ProjExt(td8∗ , com6) for
all 6 belonging to the first 9 values in Gout.

We now proceed to bound the advantage of any PPT adversary A against somewhere
extractability, i.e. Hyb0, by a series of lemmas. We remark that the proof also works for
unbounded adversaries (proving statistical somewhere extractability of BARG) if PCFC
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satisfies (1) statistical functional somewhere extractability and (2) statistical projective
somewhere extractability.

Lemma 6.22. For any 9 ∈ [ℓw], there exists a PPT adversaryℬ against the somewhere extractability
for (ℐ , ℳ̄) of PCFC such that���Pr[Hyb1, 9−1

A (�) = 1] − Pr[Hyb1, 9
A (�) = 1]

��� ≤ Advse
PCFC,ℬ(�).

Proof. Fix 9 ∈ [ℓw]. We build an adversary ℬ as follows. ℬ receives input ck from its
challenger and runs A(ck). Then, it parses the proof � of A and retrieves the tuple
(comℓx+9 ,�

1
ℓx+9). Finally, ℬ simply forwards these to its challenger.

We argue that if A wins in Hyb1, 9−1 but not in Hyb1, 9 , then ℬ also wins the game.
First, as A wins in Hyb1, 9 , it holds that PCFC.ProjVer(ck, comℓx+9 ,�

1
ℓx+9) = 1. Also, note

that G∗
ℓx+9 ← PCFC.ProjExt(td8∗ , comℓx+9). Therefore, all the preconditions for ℬ in the PC

somewhere extractability game are met. Finally, asA does not win in Hyb1, 9 , it must be
that either PCFC.Proj(td8∗ , comℓx+9) ≠ PCFC.ProjCom(td8∗ , G∗ℓx+9) or G

∗
ℓx+9 ∉ ℳ̄.

�

Lemma 6.23. For any 9 ∈ [ℓout], there exists a PPT adversaryℬ against the functional extractability
for (ℱ , ℐ ) of PCFC such that���Pr[Hyb2, 9−1

A (�) = 1] − Pr[Hyb2, 9
A (�) = 1]

��� ≤ Advfe
PCFC,ℬ(�).

Proof. Fix 9 ∈ [ℓout]. We build ℬ fromA as follows:

• Receives input ck from its challenger and runs (C , {x8}8∈[:] ,�) ← A(ck).

• Parses C to obtain the gate function "9 and the input wire set )9 .

• Parses the proof � and obtains {com6}6∈)9\[ℓx] ,�
"
9
, com9 .

• Outputs ( 5"9 , {com6}6∈)9 , com9 ,�
"
9
) where the com6 for 6 ∈ Gstmt ∩ )6 are computed

honestly as com6 ← PCFC.Com(ck, (G1,6 , . . . , G:,6)).

We argue that ifA wins in Hyb2, 9−1 but not in Hyb2, 9 , then ℬ is a successful adversary
against CFC functional extractability.

• By thewinning condition (inherited from Hyb0), it holds that the functional proof verifies,
FuncVer(ck, (com6)6∈)9 , 5"9 , com9 ,�

"
9
) = 1.

• Let G̃6 ← PCFC.ProjExt(td8∗ , com6) be the value extracted from the commitments for any
6 ∈ G .

• AsA wins in Hyb2, 9−1, we have that G̃6 = G∗6 = "9((G∗6)6∈)9 ) for every 6 ∈ [ℓx,w + 9 − 1],
and therefore for every 6 ∈ )9 . By the definition of x∗, it also follows that G̃6 ∈ ℳ̄ for
every 6 ∈ )9 .

• AsA does not win in Hyb2, 9 , then G̃ 9 ≠ G∗
9
.

128



6.6. Circuit-Succinct Compiler from PCFC to BARG

Hence, "9((G̃6)6∈)9 ) ≠ G̃ 9 and the output of ℬ is a successful break of CFC functional
extractability.

�

Note that the advantage of A in Hyb2,ℓout is zero, as the condition C(x8∗ , F∗) ≠ 1 is
incompatible with G∗

ℓC
= PCFC.ProjExt(td8∗ , comℓC ) = 1, which holds as comℓC is computed

honestly by the verifier. We collect the bounds of Theorem 6.22 and Theorem 6.23, and
conclude that the advantage ofA in the original Hyb0 is bounded by

Pr[Hyb0
A(�) = 1] ≤ ℓw · Advse

PCFC,ℬ(�) + ℓout · Advfe
PCFC,ℬ(�).

�

6.5.3 Proof of efficient verification

Lemma 6.24. Let PCFC and BARG be as defined in Theorem 6.20. If further PCFC has efficient ver-
ification with preprocessing (Theorem 6.14), then BARG has efficient verification with preprocessing
(Theorem 6.5).

Proof. Asper Theorem6.5, it suffices to show that |vk| and the runtime ofBARG.EffVer(�, vk)
are at most poly(�, log :, ℓC ). We actually prove below a stronger claim that these quantities
are at most poly(�, log :, log ℓC ) · ℓC .

We first examine |vk|. Recall that vk = ((com6)6∈Gstmt , ck[:] , (ck6)6∈Gout). Note that by
Theorem 3.1 fresh commitments are of size at most poly(�, log :) and by Theorem 3.5
aggregated commitments are identical to fresh ones. Therefore, |com6| ≤ poly(�, log :).
Next, by Theorem 4.5 it holds that |ck6| ≤ poly(�, log :, log<, log |"6|) where < = |)6| ≤
ℓC in the current context and |"6| ≤ ℓC . Thus, |ck6| ≤ poly(�, log :, log ℓC ). Finally, by
Theorem 6.12 it holds that |ck[:]| ≤ poly(�, log :). Putting everything together, we conclude
that |vk| ≤ poly(�, log :, log ℓC ).

For the runtime ofBARG.EffVer(�, vk), by Theorem3.5, each of the ℓw calls toPCFC.EffProjVer
runs in time at most poly(�, log :) according to Theorem 6.12. Also, each of the |Gout| ≤ ℓC
calls to PCFC.EffFuncVer runs in time at most poly(�, log :, log<, log |"6|) which as anal-
ysed above is at most poly(�, log :, log ℓC ). We thus conclude that BARG.EffVer(�, vk) runs
in time at most poly(�, log :, log ℓC ) · ℓC .

�

Note: in precomputation we could fix all wires of the statements corresponding to
gates (when precomputing the function) by modifying the gates directly. The circuit would
simply become a single-input C(w).

6.6 Circuit-Succinct Compiler from PCFC to BARG

In this section we construct our black-box compiler that turns a PCFC (Theorem 6.13) into
a circuit-succinct BARG for NP, this is, a BARG such that the proof size grows linearly on
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the size of the witness ℓw. Our BARG can prove batch relations C(x8 , w8) for 8 ∈ [:], where
C : ℳ̄ℓx,w → ℳ̄ are (possibly distinct, see Theorem 6.27) arithmetic circuits of bounded
size |C| ≤ ℓC .

We briefly describe our circuit-succinct compiler in Figure 6.4. The prover starts by
committing to each of the witness wires across the : batch instances, obtaining commit-
ments comℓx+1 , . . . , comℓx,w . The prover also provides subspace proofs on each of these
commitments. Until this point, the compiler is analogous to the first step of the BARG
construction in [WW22] (which we abstract in our wire-by-wire compiler in Section 6.5).
Then, instead of carrying out functional proofs for each circuit wire, the prover generates
a PCFC functional opening as follows. First, it defines a function 5C to be the parallel eval-
uation of C : times. Then, it sets an input x which is the concatenation of (x8 , w8) for every
8 ∈ [:]. Finally, it provides a functional proof of 5C (x) = (C(x1 , w1), . . . ,C(x: , w:)) = 1: .
Along with this proof, the prover provides an input commitment com and an output
commitment comH which commits to 1: . The validity of com can be verified as it must
match the aggregation of the commitments to the statement wires, which are computed
by the verifier, along with the aggregation of comℓx+1 , . . . , comℓx,w .

The proof of BARG somewhere extractability for instance 8∗ intuitively works as follows.
First, PC somewhere extractability enables the extraction of a binary witness w8∗ from each
of the ℓw commitment wires, where w8∗ is guaranteed to match the projections of these
commitments. Second, we apply PC projective aggregatability to ensure that the projection
of com indeed commits to (x8∗ , w8∗). Finally, we crucially rely on PCFC projective chain
binding to ensure that C(x8∗ , w8∗) = 1.

Notation and parameters. For an (arithmetic or Boolean) circuit C : ℳ̄ℓx,w → ℳ̄, we
define 5C : ℳ̄:·ℓx,w → ℳ̄:·ℓx,w as 5C (x1 , . . . ,x:) = (C(x1), . . . ,C(x:)). Let ℱ be the family
of such functions ℱ = { 5C : C : ℳ̄ℓx,w → ℳ̄}, and we let the input length ℓ = : · ℓx,w.

To express (8 − 1)ℓx,w + 6 ∈ [ℓ ] for 8 ∈ [:], 6 ∈ ℓx,w, we abuse notation and denote
it by (8 , 6) ∈ [ℓ ]. That is, we use a bijective mapping between [:] × [ℓx,w] and [ℓ ] given
by (8 , 6) ↦→ (8 − 1)ℓx,w + 6. This allows us to directly map values to their corresponding
instance and wire. We define the index subsets �8 B {(8 , 6) : 6 ∈ Gstmt ∪ Gwit} for 8 ∈ [:]
and �6 B {(8 , 6) : 8 ∈ [:]} for 6 ∈ Gstmt ∪ Gwit. Note that �8 ∩ �6 = {(8 , 6)} isolates a single
index (8 , 6) ∈ [ℓ ]. By construction, all functions in ℱ are ℐ -separable for the family of
index sets ℐ = {�8}8∈[:].

In Table 6.1, we show how the BARG inputs are arranged with respect to instances and
subvectors. Recall that, for a given batch 8 ∈ [:], we denote G8, 9 ← x8 , 9 for 9 = 1, . . . , ℓx, and
G8 , 9 ← w8 ,(9−ℓx) for 9 = ℓx + 1, . . . , ℓx,w.

Theorem 6.25 (Circuit-Succinct Compiler). Let ℐ B {�8 : 8 ∈ [:]} where �8 B {(8 , 6) : 6 ∈
Gstmt ∪ Gwit}, J B {�6 : 6 ∈ Gstmt ∪ Gwit} where �6 B {(8 , 6) : 8 ∈ [:]}, ℱ = { 5C : C :
ℳ̄ℓx,w → ℳ̄} where 5C (x1 , . . . ,x:) = (C(x1), . . . ,C(x:)), ℳ̄ ⊇ {0, 1} be some message space,
PCFC be a projective chainable functional commitment scheme (Theorem 6.13) for the ℐ -separable
functions ℱ and index set families (ℐ ,J ) which satisfies

• (Theorem 6.8) PC projective aggregatability,
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Setup(1� , :, 1ℓC )
ℓ B : · ℓx,w
ck← PCFC.Setup(1� , 1ℓ )
comout ← Com(ck, 1ℓ )
return crs B (ck, comout)

SetupTd(1� , :, 1ℓC , 8∗)
ℓ B : · ℓx,w
(ck, td) ← PCFC.ProjSetup(1� , 1ℓ , �8∗)
comout ← Com(ck, 1ℓ )
return (crs, td) B ((ck, comout), td)

Ext(td,C , {x8}8∈[:] ,�)
w8∗ ,6 ← PCFC.ProjExt(td, �6 , com6) ∀6 ∈ Gwit

return w8∗ B (w8∗ ,6)6∈Gwit

PreVer(crs,C , {x8}8∈[:])
x6 B (G1,6 , . . . , G:,6) ∀6 ∈ Gstmt

com6 ← PCFC.Com(ck, �6 ,x6) ∀6 ∈ Gstmt

comGstmt ← PCFC.Agg(ck, (com6)6∈Gstmt)
ck 5C ← PCFC.PreFuncVer(ck, 5C )
ck�6 ← PCFC.PreProjVer(ck, �6) ∀6 ∈ Gwit

vk B (comGstmt , ck 5C , (ck�6 )6∈Gwit)
return vk

Prove(crs,C , {(x8 , w8)}8∈[:])
x6 B (G1,6 , . . . , G:,6) ∀6 ∈ Gstmt ∪ Gwit

x B (x6)6∈Gstmt∪Gwit

com6 ← PCFC.Com(ck, �6 ,x6) ∀6 ∈ Gstmt ∪ Gwit

�16 ← PCFC.ProjProve(ck, �6 ,x6) ∀6 ∈ Gwit

�" ← PCFC.FuncProve(ck,x, 5C )
return � B ((com6 ,�

1
6)6∈Gwit ,�

")

Ver(crs,C , {x8}8∈[:] ,�)
x6 B (G1,6 , . . . , G:,6) ∀6 ∈ Gstmt

com6 ← PCFC.Com(ck, �6 ,x6) ∀6 ∈ Gstmt

com← PCFC.Agg(ck, (com6)6∈Gstmt∪Gwit)
assert PCFC.ProjVer(ck, �6 , com6 ,�

1
6) ∀6 ∈ Gwit

assert PCFC.FuncVer(ck, com, comout , 5C ,�
")

return 1

EffVer(vk,�)
comGwit ← PCFC.Agg(ck, (com6)6∈Gwit)
com← PCFC.Agg(ck, (comGstmt , comGwit))
assert PCFC.EffProjVer(ck�6 , com6 ,�

1
6) ∀6 ∈ Gwit

assert PCFC.EffFuncVer(ck 5C , com, comout ,�
")

return 1

Figure 6.4: Compiler from PCFC to fully succinct BARG.

• (Theorem 6.10) PC somewhere extractability for (ℐ ,J , ℳ̄) and

• (Theorem 6.19) PCFC projective chain binding for (ℱ , ℐ ,J ).

Then, the constructionBARG in Figure 6.4 is a somewhere extractable batch argument (Theorem 6.3)
for NP whose proof size is |�| = ℓw · (|com| + |�1|) + |�"| where �1 is a PC subspace proof, and
�" is a PCFC functional proof for 5 ∈ ℱ . Moreover, BARG admits efficient verification with
preprocessing.

Proof. The completeness, full succinctness and setup indistinguishability of BARG follow
by inspection, given the correctness, succinctness and setup indistinguishability of PCFC.
The somewhere extractability of BARG follows from Theorem 6.28. Its efficient verification
property follows from Theorem 6.32.

�

Remark 6.26. The projective aggregatability property required by Theorem 6.25 is optional – its
only purpose is so that a BARG proof does not need to include |Gwit| commitments. If we were
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statements witnesses wires
�1 �2 · · · �ℓx �ℓx+1 · · · �ℓx+9 · · · �ℓx,w �ℓx,w+1 �ℓx,w+2 · · · �ℓC

�1 x1,1 x1,2 · · · x1,ℓx w1,1 · · · w1, 9 · · · w1,ℓw G1,ℓx,w+1 G1,ℓx,w+2 · · · G1,ℓC
...

...
...

...
...

...
...

...
...

...

�8 x8 ,1 x8 ,2 · · · x8 ,ℓx w8 ,1 · · · w8 , 9 · · · w8 ,ℓw G8 ,ℓx,w+1 G8 ,ℓx,w+2 · · · G8 ,ℓC
...

...
...

...
...

...
...

...
...

...

�: x:,1 x:,2 · · · x:,ℓx w:,1 · · · w:,9 · · · w:,ℓw G:,ℓx,w+1 G:,ℓx,w+2 · · · G:,ℓC

↓ ↓ ↓ ↓ ↓ ↓
com1 com2 comℓx comℓx+1 comℓx+9 comℓx,w

Table 6.1: Structure of the committed values in Figure 6.4. The rows are associated to projection sets �8 ∈ ℐ .
The columns are associated to the subvector sets �9 ∈ J .

to drop the projective aggregatability property, the compiler needs to be slightly modified where
FuncProve and FuncVer instead take as input multiple vectors and input commitments respectively.

Remark 6.27. Although we instantiate our compiler for the standard batch relation defined by
C(x8 , w8) for 8 ∈ [:], where the circuit is the same for all batch instances, it actually supports batch
proofs for distinct circuits C8(x8 , w8) for 8 ∈ [:] without any additional overhead. The only
requirements are that each |C8| ≤ ℓC and that the PCFC supports the consequently broader family
of functions ℱ:,ℓ 5 (defined in Section 6.7), which is the case for our algebraic PCFC introduced
there. This property can be useful in applications such as the aggregation of signature schemes with
different verification equations.

In the remainder of the section, we prove somewhere extractability in Section 6.6.1 and
efficient verification in Section 6.6.2.

6.6.1 Proof of Somewhere Extractability

Lemma 6.28. Let PCFC and BARG be as defined in Theorem 6.25. It holds that BARG has
somewhere extractability.

Proof. We proceed by a series of hybrid games Hyb0 ,Hyb1,0 , . . . ,Hyb1,ℓw ,Hyb2 which pro-
gressively include additional winning conditions. The formal descriptions of the games
are given in Figure 6.5 with explanations given below.

Hyb0: This is the standard somewhere extractability game (Theorem 6.3) with the algo-
rithms in BARG inlined. To recall, in this game the adversary outputs a proof � and
the experiment runs w8∗ ← BARG.Ext(td,C , {x8}8∈[:] ,�). The adversary wins if the proof
verifies yet C(x8∗ , w8∗) ≠ 1.

Hyb1, 9 : Hyb1,0 is identical to Hyb0. In Hyb1, 9 , the game additionally checks that the first 9
entries of the extracted witness, i.e. those indexed by 6 belonging to the first 9 values in
Gwit, resides in the message subspace ℳ̄, i.e. G∗6 ∈ ℳ̄ℓw , and that they are consistent with
the projected commitments, i.e. PCFC.ProjCom(td, �6 , G∗6) = PCFC.Proj(td, com6).

Hyb2: This game simply adds the winning condition that

PCFC.Proj(td, com) = PCFC.ProjCom(td, �8∗ , (x8∗ , w∗)).
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Hyb0
A(�):

(ck, td) ← PCFC.ProjSetup(1� , 1: , �8∗)
comout ← Com(ck, 1ℓ )
(C , {x8}8∈[:] , ((com6 ,�16)6∈Gwit ,�

")) ← A(ck, comout)
com6 ← PCFC.Com(ck, �6 ,x6) ∀6 ∈ Gstmt

com← PCFC.Agg(ck, (com6)6∈Gstmt∪Gwit)
G∗6 ← PCFC.ProjExt(td, �6 , com6) ∀6 ∈ Gwit

w∗ B (G∗6)6∈Gwit

assert PCFC.ProjVer(ck, �6 , com6 ,�16) = 1 ∀ 6 ∈ Gwit

assert PCFC.FuncVer(ck, com, comout , 5C ,�") = 1

assert C(x8∗ , w∗) ≠ 1

return 1

Hyb1, 9
A (�), 0 ≤ 9 ≤ ℓw:

// identical to Hyb0
A(�) until before “return 1”

assert G∗6 ∈ ℳ̄ ∀6 ∈ Gwit ∩ [ℓx + 9]
assert PCFC.ProjCom(td, �6 , G∗6) = PCFC.Proj(td, com6) ∀6 ∈ Gwit ∩ [ℓx + 9]

Hyb2
A(�), 0 ≤ 9 ≤ ℓout:

// identical to Hyb1,ℓw
A (�) until before “return 1”

assert PCFC.ProjCom(td, �8∗ , (x8∗ , w∗)) = PCFC.Proj(td, com)

Figure 6.5: Games Hyb0 ,Hyb1, 9 ,Hyb2 for the proof of BARG somewhere extractability. All games output 1
by default. We highlight changes between games.

We now proceed to bound the advantage of any PPT adversaryA against Hyb0 by a series
of lemmas.

Lemma 6.29. For any 9 ∈ [ℓw], there exists a PPT adversaryℬ against the somewhere extractability
for (ℐ ,J , ℳ̄) of PCFC such that���Pr[Hyb1, 9−1

A (�) = 1] − Pr[Hyb1, 9
A (�) = 1]

��� ≤ Advse
PCFC,ℬ(�).

Proof. Fix 9 ∈ [ℓw]. We build an adversary ℬ as follows. ℬ receives input ck from its
challenger and runs A(ck). Then, it parses the proof � of A and retrieves the tuple
(comℓx+9 ,�

1
ℓx+9). Finally, ℬ simply forwards these to its challenger.

We argue that if A wins in Hyb1, 9−1 but not in Hyb1, 9 , then ℬ also wins the game.
First, as A wins in Hyb1, 9 , it holds that PCFC.ProjVer(ck, comℓx+9 ,�

1
ℓx+9) = 1. Also, note

that G∗
ℓx+9 ← PCFC.ProjExt(td8∗ , comℓx+9). Therefore, all the preconditions for ℬ in the PC

somewhere extractability game are met. Finally, asA does not win in Hyb1, 9 , it must be
that either PCFC.Proj(td8∗ , comℓx+9) ≠ PCFC.ProjCom(td8∗ , G∗ℓx+9) or G

∗
ℓx+9 ∉ ℳ̄.

�
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Lemma 6.30. It holds that

Pr[Hyb1,ℓw
A (�) = 1] = Pr[Hyb2

A(�) = 1].

Proof. Immediate from projective aggregatability (Theorem 6.8).
�

Lemma 6.31. There exists a PPT adversary ℬ against projective chain binding for (ℱ , ℐ ,J ) of
PCFC such that

Pr[Hyb2
A(�) = 1] ≤ Advpcb

PCFC,ℬ(�).

Proof. We build the adversary ℬ against projective chain binding fromA against Hyb2

as follows. Our adversary ℬ receives (ck, td) from its challenger, computes comout =

PCFC.Com(ck, 1ℓ ) and runsA on (ck, comout) (note thatA does not receive td as input). It
obtains ( 5C , comout , (com6)6∈Gwit ,�

") fromA.
Next, ℬ extracts the witness values w∗6 ← PCFC.ProjExt(td, �6 , com6) one by one from

the commitments (com6)6∈Gwit and generates dummy circuit inputs x̃8 = x8|w̃8 as follows:

x̃8 ← x8|0ℓw if 8 ≠ 8∗; x8|w∗ if 8 = 8∗.

It commits to the dummy inputs, ˜com← PCFC.Com(ck, (x̃1 , . . . , x̃:)). Let also H̃8 ← C(x̃8)
for all 8 ∈ [:], and let ˜comout ← PCFC.Com(ck, (H̃1 , . . . , H̃:)). Finally, ℬ generates an
honestly computed opening proof that 5C (x̃1 , . . . , x̃:) = (H1 , . . . , H:) by running �̃" ←
PCFC.FuncProve(ck, x̃, 5C ). Then, it returns the tuple

( 5C , com, ˜com, comout , ˜comout ,�
" , �̃").

Clearly, ℬ runs in polynomial time. We next analyse its success probability of violating
the projective chain binding property. Let (com6)6∈Gwit ,�

" be parsed from the outputs ofA.
Let com6 ← PCFC.Com(ck, �6 ,x6) for 6 ∈ Gstmt and com← PCFC.Agg(ck, (com6)6∈Gstmt∪Gwit).
By the correctness of PCFC,

• PCFC.FuncVer(ck, ˜com, ˜comout , 5C , �̃") = 1,

• PCFC.Proj(td, ˜com) = PCFC.ProjCom(td, �8∗ , (x8∗ , w∗)), and

• PCFC.Proj(td, ˜comout) = PCFC.ProjCom(td, �8∗ , 1ℓx,w · H̃8∗), H̃8∗ = C(x8∗ , w∗) ≠ 1.

On the other hand, with probability Pr[Hyb2
A(�) = 1], it holds that

• PCFC.FuncVer(ck, com, comout , 5C ,�") = 1,

• PCFC.Proj(td, com) = PCFC.ProjCom(td, �8∗ , (x8∗ , w∗)), and

• PCFC.Proj(td, ˜comout) = PCFC.ProjCom(td, �8∗ , 1ℓx,w).

In other words, ℬ successfully wins the PCFC projective chain binding game with proba-
bility Pr[Hyb2

A(�) = 1]. �
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We collect the bounds of Theorem 6.29, Theorem 6.30, and Theorem 6.31, conclude
that the advantage ofA in the original Hyb0 is bounded by

Pr[Hyb0
A(�) = 1] ≤ ℓw · Advse

PCFC,ℬ(�) + Advpcb
PCFC,ℬ(�).

�

6.6.2 Efficient Verification

Lemma 6.32. Let PCFC and BARG be as defined in Theorem 6.25. If further PCFC has efficient
verification with preprocessing (Theorem 6.14), then BARG has circuit-succinct verification with
preprocessing (Theorem 6.5).

Proof. Asper Theorem6.5, it suffices to show that |vk| and the runtime ofBARG.EffVer(�, vk)
are at most poly(�, log :, ℓw). We actually prove below a stronger claim that these quantities
are at most poly(�, log :) · ℓw. Note that since ℓ = : · ℓx,w and ℓx and ℓw are fixed poly(�), we
have poly(�, log ℓ ) = poly(�, log :). Therefore, in the below we express all complexities in
terms of ℓ instead of :.

We first examine |vk|. Recall that vk = (comGstmt , ck 5C , (ck�6 )6∈Gwit). Note that by Theo-
rem 3.1 fresh commitments are of size at most poly(�, log ℓ ) and by Theorem 3.5 aggregated
commitments are identical to fresh ones. Therefore, |comGstmt | ≤ poly(�, log ℓ ). Next, by
Theorem 4.5 it holds that |ck 5C | ≤ poly(�, log ℓ , log<, log | 5C |)where < = 1 in the current
context and | 5C | ≤ 2poly(�). Thus, |ck 5C | ≤ poly(�, log ℓ ). Finally, by Theorem 6.12 it holds
that |ck�6 | ≤ poly(�, log ℓ , log |�6|) for each 6 ∈ Gwit, where |�6| = : and |Gwit| = ℓw. Putting
everything together, we conclude that |vk| ≤ poly(�, log :) · ℓw.

For the runtime of BARG.EffVer(�, vk), by Theorem 3.5, the two calls to PCFC.Agg
take time at most poly(�, log ℓ ) · |Gwit| = poly(�, log ℓ ) · ℓw and poly(�, log ℓ ) · 2 respec-
tively. Then, each of the ℓw calls to PCFC.EffProjVer runs in time at most poly(�, log ℓ , |�6|)
according to Theorem 6.12. Finally, the call to PCFC.EffFuncVer runs in time at most
poly(�, log ℓ , log<, log | 5C |) which as analysed above is at most poly(�, log ℓ ). We thus con-
clude that BARG.EffVer(�, vk) runs in time at most poly(�, log ℓ ) · ℓw.

�

6.7 Algebraic PCFC from Bilinear Groups

In this section, we give an algebraic construction of a somewhere extractable projective
chainable functional commitment scheme PCFC that is sufficient to instantiate Theo-
rem 6.25, yielding a circuit-succinct BARG for circuit satisfiability.

Let ℱC = {C : Fℓ → Fℓ : |C| ≤ ℓC} be the family of arithmetic circuits of size bounded
by ℓC , where without loss of generality we let the input space be equal to the output space.
We define the function family

ℱ:,ℓC = { 5 : F:ℓ → F:ℓ ; 5 (x1 , . . . ,x:) = (C1(x1), . . . ,C:(x:)) ∧ C8 ∈ ℱC ∀8 ∈ [:]}.
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That is, ℱ:,ℓC consists of all functions which input : vectors (x8)8∈[:] and evaluate some
circuit C8 ∈ ℱC on x8 for each 8 ∈ [:].

The section is structured in two parts, where we incrementally construct PCFC using
only generic operations over pairing groups. We first construct a somewhere extractable
PC in Section 6.7.1 and then equip it with CFC algorithms in Section 6.7.2 turning it into a
PCFC, while ensuring the compatibility of all properties.

The results of this section are summarised in the following theorem:

Theorem 6.33. Let bgp := (@,G1 ,G2 ,G) , [1]1 , [1]2) be a pairing setting description, and let
" = F = Z@ . Assume that the bilateral MDDH�,ℓ ,3 assumption and the KerDH�,ℓ assumption
hold over bgp for some � ≥ 2 and ℓ , 3 = poly(�). Then, the construction PCFC = (PC,CFC) is a
somewhere extractable PCFC with the following properties:

• (Projective) aggregatable.

• PC is somewhere extractable for (ℐ ,J , ℳ̄), where ℳ̄ = {0, 1} and ℐ ,J ⊆ 2[ℓ ] are arbitrary
families of sets such that |� ∩ �| ≤ 1 for every � ∈ ℐ , � ∈ J .

• CFC is projective chain binding for (ℱ:,ℓC , ℐ ′) where ℐ ′ = {{8(ℓ − 1) + 1, . . . , 8ℓ} : 8 ∈ [:]}.

• The commitment key size |ck| and the prover running time are O
(
� · �3 · :5 · ℓ5

C

)
.

• Commitments have size |com| = O(� · �).

• The PC subspace proofs have size
���1 �� = O (

� · �2) .
• The PCFC functional proofs have size

��� 5
�� = O (

� · �2) .
• PCFC efficient verification runs in time O

(
� · �2) .

Proof. The proof follows from the constructions in Section 6.7.1 and Section 6.7.2 and
from the series of lemmas proven there. We state the different properties: a) Binding
follows from Theorem 6.35. b) Projection correctness follows from Theorem 6.36. c) Setup
indistinguishability follows from both Theorem 6.37 and Theorem 6.48. d) Somewhere
completeness follows from Theorem 6.38. e) Somewhere extractability follows from The-
orem 6.39. f ) Aggregatability and projective aggregatability follow from Theorem 6.41.
g) Projective chain binding follows from Theorem 6.52. h) Efficient verification follows
from both Theorem 6.42 and Theorem 6.50.

�

As � is a small constant (e.g., � = 2), the combination of Theorem 6.25 and Theorem 6.33
yields the following corollary:

Corollary 6.34. Under the assumptions of Theorem 6.33, there exists an algebraic somewhere
extractable BARG for NP such that:

• The setup size |crs| and the prover running time are O
(
� · :5 · ℓ5

C

)
.

• The proof size is |�| = O(� · ℓw).

• Efficient verification runs in time O(� · ℓw).
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6.7.1 Algebraic PC from Bilinear Groups

We introduce a construction of a somewhere extractable PC. Conceptually, our PC is an
adaptation of the proof systems in theWW22BARG [WW22] towork over a larger projective
commitment key that is compatible with the WW24 FC proof systems [WW24b]. Notably,
the projective space in our PC has dimension �, as opposed to 1 in the commitments in the
WW22 BARG. Therefore, our commitments are vectors of length 2� instead of �+1. Besides,
our scheme explicitly supports subvector commitments, as well as their aggregation. We
remark that all algorithms are well defined for any � ∈ J = 2[ℓ ]. The message space is
defined asℳ = Z@ = F and the small message space as ℳ̄ = {0, 1}. All vectors x ∈ Fℓ are
column vectors. As in Section 6.7.2 we borrow algorithms from the [WW24b] CFC, we
follow their notation closely.

Our PC construction.

Setup(1� , 1ℓ ):

• Generate a bilinear group description bgp := (@,G1 ,G2 ,G) , [1]1 , [1]2) ← ℬG(1�), and
let F := Z@ and � be the �-Lin parameter.

• Sample random invertible B̂, B̌←$ F2�×2� and let B̂∗ = B̂−1 and B̌∗ = B̌−1.

• Split B̂ =

[
B̂1

B̂2

]
where B̂1 , B̂2 ∈ F�×2� and split B̂∗ =

[
B̂∗1 B̂∗2

]
where B̂∗1 , B̂

∗
2 ∈ F2�×�.

By construction, B̂1 · B̂∗1 = B̂2 · B̂∗2 = I� and B̂1 · B̂∗2 = B̂2 · B̂∗1 = 0�. Define B̌1 , B̌2 ∈ F�×2�

and B̌∗1 , B̌
∗
2 ∈ F2�×� analogously.

• Sample Ŝ1 , Š1 ←$ F�×ℓ , and define T̂ = B̂∗1 · Ŝ1 ∈ F2�×ℓ and Ť = B̌∗1 · Š1 ∈ F2�×ℓ . Let also
t̂8 ∈ F2� be each of the column vectors in T̂, and similarly for ť8 ∈ F2� and Ť.

• Finally, sample R8 , 9 ←$ F�×� and set

Ŵ8 , 9 ← −B̂∗1R)
8,9 , W̌8 , 9 ← B̌∗1(š1,8 ŝ

)
1, 9 +R8 , 9).

Output the following commitment key:

ck :=
( [

Ť
]

1 ,
[
T̂
]

2 ,
[
B̌∗1

]
1 ,

[
B̂∗1

]
2 ,

{[
W̌8 , 9

]
1 ,

[
Ŵ8 , 9

]
2

}
8 , 9∈[ℓ ]

)
.

Given any subset � ⊆ [ℓ ], we let t̂� ←
∑
8∈� t̂8 and ť� ←

∑
8∈� ť8 . Note that

[
ť�
]

1 ,
[
t̂�
]

2 can
be computed from ck for any � ⊆ [ℓ ].

ProjSetup(1� , 1ℓ , �): Let P� ∈ Fℓ×ℓ be the (diagonal) projection matrix associated to �, de-
fined by P� 8,8 = 1 if 8 ∈ � and P� 8, 9 = 0 elsewhere. Sample all matrices as before, and
additionally sample Ŝ2 , Š2 ←$ F�×ℓ . Then, set

T̂← B̂∗1 · Ŝ1 + B̂∗2 · Ŝ2 · P� , Ť← B̌∗1 · Š1 + B̌∗2 · Š2 · P�

Ŵ8 , 9 ←
{
−B̂∗1R)

8,9
+ t̂8 š)1, 9 if 9 ∈ �

−B̂∗1R)
8,9

if 9 ∉ �
, W̌8 , 9 ←

{
B̌∗1R8, 9 if 9 ∈ �

B̌∗1R8 , 9 + ť8 ŝ)1, 9 if 9 ∉ �
.

Output the commitment key as before, and output td := (� , B̌2 , Š2 , B̂2 , Ŝ2).
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Com(ck, � ,x): Output [ĉ]2 ←
∑
8∈�

[
t̂8
]

2 · G8 .

ProjCom(td, � ,x): Output
[
d̂
]

2 ←
∑
8∈�∩� [ŝ2,8]2 · G8 .

Proj(td, com): Parse B̂2 from td, and parse com = [ĉ]2. Output
[
d̂
]

2 ← B̂2 · [ĉ]2.

ProjProve(ck, � ,x):

• Compute the twin commitment [č]1 ←
∑
8∈�

[
ť8
]

1 G8 .

• Compute the booleanity proofs:[
Π̌1

]
1 ←

∑
8 , 9∈� ,8≠9

[
W̌8 , 9

]
1 · G8(G 9 − 1),

[
Π̂1

]
2 ←

∑
8 , 9∈� ,8≠9

[
Ŵ8 , 9

]
2 · G8(G 9 − 1),

[
Π̌2

]
1 ←

∑
8 , 9∈� ,8≠9

[
W̌8 , 9

]
1 · G 9(G8 − 1),

[
Π̂2

]
2 ←

∑
8 , 9∈� ,8≠9

[
Ŵ8, 9

]
2 · G 9(G8 − 1).

• Output �←
(
[č]1 ,

[
Π̌1

]
1 ,

[
Π̂1

]
2 ,

[
Π̌2

]
1 ,

[
Π̂2

]
2

)
.

ProjVer(ck, � , com,�): Parse � =

(
[č]1 ,

[
Π̌1

]
1 ,

[
Π̂1

]
2 ,

[
Π̌2

]
1 ,

[
Π̂2

]
2

)
and com = [ĉ]2.

Compute
[
ť�
]

1 ,
[
t̂�
]

2. Output 1 if and only if both of the following hold:

[č]1 ·
[
t̂)�

]
2
= [č]1 ·

[
ĉ)

]
2 +

[
B̌∗1

]
1 ·

[
Π̂)

1
]

2 +
[
Π̌1

]
1 ·

[
B̂∗)1

]
2 . (6.1)[

ť�
]

1 ·
[
ĉ)

]
2 = [č]1 ·

[
ĉ)

]
2 +

[
B̌∗1

]
1 ·

[
Π̂)

2
]

2 +
[
Π̌2

]
1 ·

[
B̂∗)1

]
2 . (6.2)

PreProjVer(ck, �): Output ck� ←
( [
ť�
]

1 ,
[
t̂�
]

2 ,
[
B̌∗1

]
1 ,

[
B̂∗)1

]
2

)
.

EffProjVer(ck� , com,�): Check equations 6.1, 6.2 from ProjVer and output 1 if and only if
both hold.

ProjExt(td, � , com): Parse (� , Ŝ2) from td and compute
[
d̃
]

2 ← Proj(td, com). Then, find a
vector x̃ ∈ {0, 1}�∩� such that

[
d̃
]

2 =
∑
8∈�∩� [ŝ2,8]2 · G̃8 . Output x̃ if found. Otherwise,

output ⊥.
Note that this algorithm runs in time O

(
2|�∩�| · poly(�)

)
.

Agg(ck, (com�)�∈J ′) → com : Output [ĉ]2 ←
∑
�∈J ′

[
ĉ�

]
2.

ProjAgg(ck, (pcom�)�∈J ′) → pcom : Output
[
d̂
]

2 ←
∑
�∈J ′

[
d̂�

]
2.

Proofs of the properties of PC. Next, we prove that PC satisfies all the properties
required by Theorem 6.33. We remark that most of the properties and the proofs follow
the blueprints of [WW22] with minor modifications. Essentially, we adapt their proofs
to work over a projective space of dimension �, as the commitments in the WW22 BARG
implicitly have a projective space of dimension 1.

Lemma 6.35. Assume that the KerDH�,ℓ assumption holds over bgp. Then, se-PC is binding
(Theorem 3.1).
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Proof. Let A(ck) be a PPT algorithm against binding that returns x,x′ ∈ F� such that
x ≠ x′ and Com(ck, � ,x) = Com(ck, � ,x′). Note that by construction

[
T̂�

]
2 · (x − x

′) = [0]2.
We show how to useA to build an adversary ℬ against KerDH�,ℓ . ℬ receives

[
Ŝ1

]
2 ∈

G�×ℓ
2 from its challenger, generates all othermatrices involved in Setup including B̂∗1 ∈ F2�×�,

and generates a commitment key ck which sends to A. ℬ receives x,x′ from A(ck)
and outputs the vector u = x − x′ ≠ 0. We argue that u is in the kernel of

[
Ŝ1

]
2. Let

v = Ŝ1 · u. Note that B̂∗1v = 0 if and only if v = 0, as B̂∗1 has maximal rank �. Therefore,
as

[
T̂
]

2 u =
[
B̂∗1

]
2 v = [0]2, we conclude that v = 0, and ℬ successfully wins the KerDH�,ℓ

game. �

Lemma 6.36. se-PC satisfies projection correctness (Theorem 6.7).

Proof. Let x ∈ F� , � ⊆ [ℓ ], � ⊆ [ℓ ] and ck← ProjSetup(1� , 1ℓ , �). Then,

Proj(td,Com(ck, � ,x)) = B̂2 ·
[∑
8∈�

t̂8 · G8

]
1

= B̂2 ·
[
T̂ · x

]
1

= B̂2 ·
[
B̂∗1 · Ŝ1 + B̂∗2 · Ŝ2 · P�

]
1 · x =

[
Ŝ2 · P� · x

]
1

=

[ ∑
8∈�∩�

ŝ2,8 · G8

]
1

.

Where the simplification follows by construction of the commitment key, as B̂2 · B̂∗2 = I:
and B̂2 · B̂∗1 = 0: . �

Lemma 6.37. Assume that the MDDH�,ℓ ,2� assumption holds over bgp. Then, PCFC satisfies
setup indistinguishability (Theorem 6.7).

Proof. We define a series of game hops as follows. Note that we display each columnn
vectors ť8 , t̂8 of the matrices Ť, T̂ separately.

• In Hyb0, we have the key in normal mode, where

t̂8 ← B̂∗1ŝ1,8 , ť8 ← B̌∗1š1,8 .

Ŵ8 , 9 ← −B̂∗1R)
8,9 , W̌8 , 9 ← B̌∗1(š1,8 ŝ

)
1, 9 +R8 , 9)

• In Hyb1, we change the distribution of Ŵ8 , 9 , Ŵ8 , 9 . Namely, we sample Ŝ2 , Š2 ←$ F�×ℓ and
set

Ŵ8 , 9 ←
{
−B̂∗1R)

8,9
+ t̂8 š)1, 9 if 9 ∈ �

−B̂∗1R)
8,9

if 9 ∉ �
, W̌8 , 9 ←

{
B̌∗1R8 , 9 if 9 ∈ �

B̌∗1R8, 9 + ť8 ŝ)1, 9 if 9 ∉ �
.

• In Hyb2, we change the way that t̂8 is sampled. Namely, we set Ŵ8 , 9 , Ŵ8 , 9 as in Hyb1,
sample û8 ←$ F2�, and set

t̂8 ←
{

û8 if 8 ∈ �
B̂∗1 · ŝ1,8 if 8 ∉ �

, ť8 ← B̌∗1 · š1,8
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• In Hyb3, we sample t̂8 in trapdoor mode. Namely, we set Ŵ8 , 9 , Ŵ8 , 9 as in Hyb2, and then

t̂8 ←
{

B̂∗1 · ŝ1,8 + B̂∗2 · ŝ2,8 if 8 ∈ �
B̂∗1 · ŝ1,8 if 8 ∉ �

, ť8 ← B̌∗1 · š1,8

• In Hyb4, we change the way that ť8 is sampled. Namely, we set Ŵ8 , 9 , Ŵ8 , 9 as in Hyb3,
sample ǔ8 ←$ F2�, and set

t̂8 ←
{

B̂∗1 · ŝ1,8 + B̂∗2 · ŝ2,8 if 8 ∈ �
B̂∗1 · ŝ1,8 if 8 ∉ �

, ť8 ←
{

ǔ8 if 8 ∈ �
B̌∗1 · š1,8 if 8 ∉ �

• In Hyb5, we sample the full key in trapdoor mode. Namely, we set Ŵ8 , 9 , Ŵ8 , 9 as in Hyb4,
and set

t̂8 ←
{

B̂∗1 · ŝ1,8 + B̂∗2 · ŝ2,8 if 8 ∈ �
B̂∗1 · ŝ1,8 if 8 ∉ �

, ť8 ←
{

B̌∗1 · š1,8 + B̌∗2 · š2,8 if 8 ∈ �
B̌∗1 · š1,8 if 8 ∉ �

We proceed to bound the advantage between the different game hops.

Hyb0 → Hyb1: . This is a syntactic relabeling that follows from generating R8 , 9 as follows:
Sample R̄8 , 9 ←$ F�×�, and let

R8 , 9 ←
{

R̄8 , 9 − š1,8 ŝ
)
1, 9 if 9 ∈ �

R̄8 , 9 if 9 ∉ �

Clearly, R8 , 9 still follows a uniform distribution over F�×�, and so the view of the adversary
in both games is identical. Therefore,

Adv0
se-PC,A(�) ≤ Adv1

se-PC,A(�).

Hyb1 → Hyb2: This follows by a sequence of |�| sub-hybrids where we change each t̂9 at
a time. In each of the sub-hybrids, we carry out a reduction to MDDH�,1,2� where the
challenge matrix is

[
B̂∗1

]
2. We specify the first sub-hybrid, where we change the smallest

index 8∗ ∈ �. LetA be an adversary against the first sub-hybrid.

• Let ℬ be an adversary against MDDH�,1,2� which receives a challenge matrix
[
B̂∗1

]
2 ∈

G2�×�
2 and a challenge vector [z]2 ∈ G2�

2 .
• ℬ generates a ck as follows (we specify only the modified terms):[

t̂8
]

2 ←
{

[z]2 if 8 = 8∗[
B̂∗1

]
2 · ŝ1,8 if 8 ≠ 8∗

,

[
Ŵ8 , 9

]
2 ←

{
−

[
B̂∗1

]
2 R)

8,9
+

[
t̂8
]

2 š
)
1, 9 if 9 = 8∗

−
[
B̂∗1

]
2 R)

8,9
if 9 ≠ 8∗

.

Note, in particular, that the terms ŝ1, 9 are always used in t̂8 for 9 ∉ �, and so W̌8 , 9 does
never change its distribution.
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• The distribution of the key is identical to Hyb1 whenever z = B̂∗1 · ŝ1,8∗ as ŝ1,8∗ is sampled
uniformly at random. On the other hand, it is identical to Hyb2 whenever z is uniform.

Hence, ℬ simply gives the key toA and outputs whateverA outputs. We conclude that

Adv1
se-PC,A(�) ≤ Adv2

se-PC,A(�) + Advmddh
ℬ (�).

Hyb2 → Hyb3: This is just a syntactic relabeling, as the distribution of
[
t̂8
]

2 is identical in
both games. To see this, note that B̂∗1 and B̂∗2 together form a basis of the 2�-dimensional
vector space, and that ŝ1,8 , ŝ2,8 are sampled at random. Hence,

Adv2
se-PC,A(�) ≤ Adv3

se-PC,A(�).

Hyb3 → Hyb4: The argument is the same as in between Hyb1 and Hyb2, so we omit it. It
follows that

Adv3
se-PC,A(�) ≤ Adv4

se-PC,A(�) + Advmddh
ℬ (�).

Hyb4 → Hyb5: The argument is the same as in between Hyb2 and Hyb3, so we omit it. It
follows that

Adv4
se-PC,A(�) ≤ Adv5

se-PC,A(�).

The lemma follows by collecting the different advantages.
�

Lemma 6.38. se-PC satisfies somewhere completeness (Theorem 6.10).

Proof. Let � , � ⊆ [ℓ ] and x ∈ {0, 1}� . Note that G2
8
= G8 for every 8 ∈ �. First, note that for

any 8 , 9 ∈ [ℓ ], the following equality holds

B̌∗1 · Ŵ)
8,9 + W̌8 , 9 · B̂∗)1 = −B̌∗1 · R8 , 9 · B̂∗)1 + B̌∗1 · (š1,8 ŝ

)
1, 9 +R)

8,9) · B̂∗)1 = ť8 t̂
)
9

We start on the RHS of the first verification equation in the ProjVer algorithm.

č · ĉ)+B̂∗1 · Π̂)
1 + Π̌1 · B̂∗)1 =

=

∑
8 , 9∈�

ť8 t̂
)
9 G8G 9 +

∑
8 , 9∈� ,8≠9

(
B̌∗1 · Ŵ)

8,9 + W̌8 , 9 · B̂∗)1
)
G8(G 9 − 1)

=

∑
8 , 9∈�

ť8 t̂
)
9 G8G 9 +

∑
8 , 9∈� ,8≠9

ť8 t̂
)
9 G8(G 9 − 1)

=

∑
8∈�

ť8 t̂
)
8 G

2
8 +

∑
8 , 9∈� ,8≠9

ť8 t̂
)
9 G8

=

(∑
8∈�

ť8G8

)
· ©­«

∑
9∈�

t̂)9
ª®¬

= č · t̂)�

�
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Correctness for the second verification equation follows analogously.

Lemma 6.39. se-PC satisfies statistical somewhere extractability (Theorem 6.10) for any sets � ∈ ℐ ,
� ∈ ℐ such that |� ∩ �| = 1.

Proof. Let � , � ⊆ [ℓ ] such that � ∩ � = {8∗}. Our goal is to prove that the extraction is correct
and matches the projection of com except with negligible probability against unbounded
adversaries. The proof follows the blueprint of the proof of [WW22, Lemma 4.12], although
the trapdoor setup in our construction differs. We start by proving the following lemma.

Lemma 6.40. With respect to the matrices defined in ProjSetup, any vector v ∈ F2� can be
uniquely written as

v = B̂∗1 · û1 + B̂∗2 · û2 , and v = B̌∗1 · ǔ1 + B̌∗2 · ǔ2

for some vectors û1 , û2 , ǔ1 , ǔ2 ∈ F�.

Proof. Note that B̂∗ =
[
B̂∗1 B̂∗2

]
where B̂∗1 , B̂

∗
2 ∈ F2�×� form a basis of F2�×2�. Hence, any

vector can be written uniquely as a combination of 2� basis vectors, i.e.,

v =

[
B̂∗1 B̂∗2

]
·
[
û1

û2

]
.

And similarly for the basis formed by B̌∗1 , B̌
∗
2.

�

Let
(
[č]1 , [ĉ]2 ,

[
Π̌1

]
1 ,

[
Π̂1

]
2 ,

[
Π̌2

]
1 ,

[
Π̂2

]
2

)
be commitments and proof terms that

pass the two verification equations. Following the lemma, let ǔ1 , ǔ2 , û1 , û2 ∈ F� be the
unique vectors such that č = B̌∗1 · ǔ1 + B̌∗2 · ǔ2 and ĉ = B̂∗1 · û1 + B̂∗2 · û2. When we rewrite
the following terms that appear in the verification relation in the above form, we obtain

č · t̂)� =

(
B̌∗1 · ǔ1 + B̌∗2 · ǔ2

)
·
(∑
8∈�

B̂∗1 · ŝ1,8 +
∑
8∈�∩�

B̂∗2 · ŝ2,8

))
,

č · ĉ) =

(
B̌∗1 · ǔ1 + B̌∗2 · ǔ2

)
·
(
B̂∗1 · û1 + B̂∗2 · û2

))
,

ť� · ĉ) =

(∑
8∈�

B̌∗1 · š1,8 +
∑
8∈�∩�

B̌∗2 · š2,8

)
·
(
B̂∗1 · û1 + B̂∗2 · û2

))
.

Now, consider the two verification equations:

[č]1 ·
[
t̂)�

]
2
= [č]1 ·

[
ĉ)

]
2 +

[
B̌∗1

]
1 ·

[
Π̂)

1
]

2 +
[
Π̌1

]
1 ·

[
B̂∗)1

]
2 ,[

ť�
]

1 ·
[
ĉ)

]
2 = [č]1 ·

[
ĉ)

]
2 +

[
B̌∗1

]
1 ·

[
Π̂)

2
]

2 +
[
Π̌2

]
1 ·

[
B̂∗)1

]
2 .
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If we now project each term to the projective subspace by multiplying each term by B̌2 on
the left and B̂)

2 on the right, we get

B̌2 [č]1 ·
[
t̂)�

]
2

B̂)
2 = B̌2 [č]1 ·

[
ĉ)

]
2 B̂)

2 ,

B̌2
[
ť�
]

1 ·
[
ĉ)

]
2 B̂)

2 = B̌2 [č]1 ·
[
ĉ)

]
2 B̂)

2 .

Where we have used that B̌2 · B̌∗1 = B̂2 · B̂∗1 = 0: , and so the terms with a B∗1-type matrix
are canceled out. Plugging in the expressions for the remaining terms, and using that
� ∩ � = {8∗}, we derive

ǔ2 · ŝ)2,8∗ = ǔ2 · û)2 ,
š2,8∗ · û)2 = ǔ2 · û)2 ,

Where we have used that B̌2 · B̌∗2 = B̂2 · B̂∗2 = 1: . For the above equations to hold, we must
have that:

ǔ2 · (ŝ)2,8∗ − û)2 ) = 0: = (š2,8∗ − ǔ2) · û)2 .
We analyze the first equality. As these are outer products, we have that, coordinate-wise,
(Ď2)8 · ((B̂2,8∗)9 − (D̂2)9) = 0 for every 8 , 9 ∈ [�]. Hence, we conclude that either ǔ2 = 0, or
û2 = ŝ2,8∗ . A similar analysis can be carried out for the second equation, which allows us
to conclude that ǔ2 = �̌ · š2,8∗ and that û2 = �̂ · ŝ2,8∗ for some �̌, �̂ ∈ {0, 1}.

To conclude the proof, note that the extractor runs
[
d̂
]

1 ← Proj(td, com), which by
definition of Proj and by the previous argument, is[

d̂
]

2 = B̂2 · [ĉ]2
= B̂2 ·

[
B̂∗1 · û1 + B̂∗2 · û2

]
2

= [û2]2 = �̂ · [ŝ2,8∗]2
Hence, by construction of the extractor, the extracted value G8∗ = �̂ ∈ {0, 1}. �

Lemma 6.41. se-PC satisfies aggregatability (Theorem 3.5) and projective aggregatability (Theo-
rem 6.8).

Proof. Both properties follow from the algebraic structure of the commitments, which are
linearly homomorphic. The proof is straightforward and is omitted. �

Lemma 6.42. se-PC satisfies efficient verification (Theorem 6.12) where EffProjVer runs in time
O

(
� · �2) .

Proof. Followsdirectly from the descriptions ofPreProjVer(ck, �) andEffProjVer(ck� , com,�).
�

Remark 6.43. Given ℐ = {{8} : 8 ∈ [ℓ ]}, it is straightforward to extend se-PC to build a PCFC
for ℐ -separable quadratic functions that achieves functional extractability (Theorem 6.17). This is
necessary to build a BARG via Theorem 6.20. The extension consists of adding CFC prove and verify
algorithms that run as described in [WW22, Remark 4.16], and we refer to their work for the details.
Then, the proof of functional extractability follows a similar pattern as the proof of Theorem 6.39.
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6.7.2 Algebraic PCFC from Bilinear Groups

We construct a (somewhere extractable) projective chainable functional commitment PCFC
(Theorem 6.13) by augmenting the PC from the previous section with CFC algorithms.
Our starting point, which we argue is the most natural choice given that it is the only fully-
succinct algebraic FC in the literature, is the WW24 CFC on its chainable form [WW24b,
Remark 5.18]. Unfortunately, this scheme does not satisfy projective chain binding (Theo-
rem 6.19), which we require for our circuit-succinct compiler to a BARG.

The WW24 scheme has multiple internal algorithms for committing and proving
relations on commitments. Our PCFC will also build on (two of) their algorithms, although
we will introduce modifications towards achieving projective chain binding. We start with
a description of the internals of WW24, where we already introduce some generalizations.
We remark that these algorithms only serve the purpose of modularizing the scheme and
the proofs. When the PCFC is used in a black-box way as in our compiler, they are hidden
behind the PCFC interface.

Base commitment scheme. There are two families of setup algorithms in WW24: those
that generate “base” commitment keys, and those that extend the commitment key with
additional terms to enable a proof system. The so-called base setup algorithm ckbase ←
SetupBase(1� , 1ℓ , 1ℓC ) is parameterized by the maximum input length ℓ and the maximum
circuit size ℓC . Such a setup supports arbitrary arithmetic circuits C : Fℓ → Fℓ that
have at most ℓC arithmetic gates.12 The algorithm generates two independent projective
commitment keys. The type-I key

[
T̂
]

2 ∈ G
2�×ℓC
2 intentionally coincides with the primary

commitment key of PC, and its terms are always represented with a hat accent. The
type-II key is defined by two random matrices T� ,T� ←$ F2�×ℓC . To commit to an input
x ∈ Fℓ , and an output y ∈ Fℓ via PCFC.Com, one uses the type-I key on the set [ℓ ] or [ℓ ],
respectively. The type-II key is used internally to enable interactions between the functional
proof algorithms.

We remark that, similarly to our PC construction, both keys are projective. One can
sample them in trapdoormode by specifying two (independent) projection sets �1 , �2 ⊆ [ℓC ]
for the type-I and type-II keys, respectively.13 We denote this operation by (ckbase , td) ←
ProjSetupBase(1� , 1ℓ , 1ℓC , (�1 , �2)).

Functional proof systems. For functional openings, there are three proof systems that
build on top of the type-I and type-II keys: prefix proofs (Pre), linear map proofs (Lin), and
quadratic map proofs (Quad). We describe the last two in the generalized form we use in
our construction, where the separability sets can be arbitrary and not necessarily prefixes.
The prefix proof system is not needed in our construction, so we omit its details.

Lin: is a tuple of algorithms (SetupLin,OpenLin,VerLin) that extend the base FC algorithms.
SetupLin(ckbase ,S) extends the base commitment key, requiring a separability set S ⊆

12We remind that, without loss of generality and to simplify the notation, we assume that the input space and
the output space are the same.

13In the original WW24 scheme, �1 , �2 are always prefix sets [91], [92] for 91 , 92 ≤ ℓC .
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2[ℓC ]×[ℓC ] and outputting an extended ck. Let �1 be a type-I commitment to a vector x ∈ FℓC
and let �2 be a type-II commitment to H ∈ FℓC . Let also 5 : FℓC → FℓC be a (�1 , �2)-separable
linear function such that 5 (x) = y. Then, OpenLin(ck,x, 5 ) outputs a linear map proof
�. The proof can be verified using VerLin(ck, �1 , �2 , 5 ,�). The proof system also admits
algorithms (PreVerLin, EffVerLin) for efficient verification with pre-processing, which run
in time O

(
� · �2) .

Its associated security notion is called linear chain binding (Theorem 6.44) and can be
seen as a restriction of our projective chain binding (Theorem 6.19) for linear functions.14

Given a trapdoored setup at (�1 , �2) ∈ S, it is hard for any PPT adversary to output
two input commitments �1 , �′1, output commitments �2 , �′2, a (�1 , �2)-local function 5

and proofs �,�′ such that (1) both proofs verify, (2) Proj(td, �1) = Proj(td, �′1), and (3)
Proj(td, �2) ≠ Proj(td, �′2).

Quad: is a tuple of algorithms (SetupQuad,OpenQuad,VerQuad). Its properties are identical
to those of Lin, except that it admits (�1 , �2)-separable quadratic functions 5 : FℓC → FℓC ,
and except that the roles of �1 and �2 are reversed. Its security notion, quadratic chain
binding (Theorem 6.45, which generalizes [WW24b, Definition 4.35]), is analogous to
linear chain binding except that it considers quadratic functions.

We next introduce the formal definitions of our generalizations of linear chain binding
and quadratic chain binding, as well as the corresponding definitions of projective matrices
that we use in our construction.

Generalization of chain binding properties. For our generalizations of linear chain
binding and quadratic chain binding, we refer to dual-type keys generated byProjSetupBase
as described before, where �1 is a type-I commitment and �2 is a type-II commitment.
We also allow the adversary to have the trapdoor of the scheme, which is needed in our
security reductions. Note that the definitions of linear and quadratic chain binding differ
only on the ordering of the commitments.

Definition 6.44 (Generalized Linear Chain Binding for Lin). Let SLin ⊆ 2[ℓC ]×[ℓC ] and let ℱ SLin
be the family of linear functions 5 : FℓC → FℓC such that 5 is SLin-separable. A PC augmented with
Lin satisfies generalized linear chain binding if for any PPT adversaryA, for any ℓ ∈ N, and for
any (�1 , �2) ∈ SLin,

Pr


Proj(td, �2)
≠ Proj(td, �′2)
∧ 5 ∈ ℱ SLin

��������������

(ckbase , td) ← ProjSetupBase(1� , 1ℓC , (�1 , �2))
ck← SetupLin(ckbase ,SLin)
( 5 , �1 , �′1 , �2 , �′2 ,�,�

′) ← A(ck, td)
VerLin(ck, �1 , �2 , 5 ,�) = 1
VerLin(ck, �′1 , �

′
2 , 5 ,�

′) = 1
Proj(td, �1) = Proj(td, �′1)


≤ negl(�)

14This is a generalization of the original chain binding notion [WW24b, Definition 4.20] where �1 , �2 are
required to be prefixes.
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Definition 6.45 (Generalized Quadratic Chain Binding for Quad). Let SQuad ⊆ 2[ℓC ]×[ℓC ] and
let ℱ SQuad be the family of quadratic functions 5 : FℓC → FℓC such that 5 is SQuad-separable. A PC
augmented with Lin satisfies generalized quadratic chain binding if for any PPT adversaryA, for
any ℓ ∈ N, and for any (�1 , �2) ∈ SQuad,

Pr


Proj(td, �1)
≠ Proj(td, �′1)
∧ 5 ∈ ℱ SQuad

��������������

(ckbase , td) ← ProjSetup(1� , 1ℓC , �1 , �2)
ck← SetupQuad(ckbase ,SQuad)
( 5 , �1 , �′1 , �2 , �′2 ,�,�

′) ← A(ck, td)
VerQuad(ck, �2 , �1 , 5 ,�) = 1
VerQuad(ck, �′2 , �

′
1 , 5 ,�

′) = 1
Proj(td, �2) = Proj(td, �′2)


≤ negl(�)

Projection matrices. We describe the projection matrices P(SLin) ,P(SQuad) for separable
linear and quadratic functions below, which we adapt from [WW24b, Definitions 4.21,
4.36]. Recall that %� are diagonal projection matrices such that %�8 ,8 = 1 if 8 ∈ � and %�8 ,8 = 0
otherwise.

Definition 6.46 (Projection matrix for a separable linear function). Let ℓC ∈ N be an input
length. For sets �1 , �2 ⊆ [ℓC ], we define the projection matrix P(�1 ,�2)Lin to be

P(�1 ,�2)Lin := Iℓ2
C
− (IℓC − P�1) ⊗ P�2 ∈ {0, 1}ℓ

2
C×ℓ

2
C .

For a separability set S ⊆ 2[ℓC ]×[ℓC ], we define the linear projection matrix for S to be

P(S) :=
∏

(�1 ,�2)∈S
P(�1 ,�2)Lin ∈ {0, 1}ℓ2

C×ℓ
2
C .

Definition 6.47 (Projection matrix for a separable quadratic function). Let ℓC ∈ N be an
input length. For sets �1 , �2 ∈ [ℓC ], we define the projection matrix P(�1 ,�2)Quad to be

P(�1 ,�2)Quad := Iℓ3
C
− (Iℓ2

C
− (P�1 ⊗ P�1)) ⊗ P�2 ∈ {0, 1}ℓ

3
C×ℓ

3
C .

For a separability set S ⊆ 2[ℓC ]×[ℓC ], we define the quadratic projection matrix for S to be

P(S) :=
∏

(�1 ,�2)∈S
P(�1 ,�2)Quad ∈ {0, 1}

ℓ3
C×ℓ

3
C .

Our PCFC construction. Our PCFC is designed for the function family ℱ:,ℓC defined
in Theorem 6.33. We additionally define ProjSetup that takes two arguments (�0 , �1 , �2) – a
necessity for granularity in the projective chain binding proof. In our construction, the
setup of Lin,Quad is modifiedwith respect toWW24 to express functions inℱ:,ℓC accurately,
such that there are no cross-wires between any two parallel “circuit blocks”.

The construction essentially boils down to three commitment keys and four functional
proofs (recall Figure 6.1 from the technical overview). The primary commitment key ck0 is
the same as in PC described in Section 6.7.1. Then, we rely on auxiliary commitment keys
ck1 , ck2 to realise the following functional proofs:
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• A linear proof �in for an input-projection map B that maps (the first ℓ coordinates of) the
input commitment com under ck0 to a commitment �2 under ck2 to the circuit trace.

• A linear proof �Lin between �1 (under ck1) and �2 (under ck2) for the identity function
83.

• A quadratic proof �Quad between �2 and �1 for a next-wire function F.

• A quadratic proof �out for an output-projection map ? that maps (the last ℓ coordinates
of) �2 into (the first ℓ coordinates of) comH .

Setup(1� , 1:ℓ ):

• Generate ck0 ← PC.Setup(1� , 1:ℓC ).
• Sample matrices T1 ,T� ,T� ←$ F2�×ℓC at random. Let T∗ ← T� ⊗ T� ∈ F4�2×ℓ2

C and let
ckbase ← ([T1]2 , [T�]1 , [T�]2 , [T�]2 , [T∗]2)
For convenience, we name ck′←

(
[T̂]2 , [T�]1 , [T�]2 , [T�]2 , [T∗]2

)
⊆ ck. Note that the

first term is (the type-I key) taken from ck0 and the remaining terms correspond to the
type-II key from ckbase.

• Define the following sets and families of sets:

�8 , 9 = {(8 − 1)ℓC + 1, . . . , (8 − 1)ℓC + 9},
Sin = {(�8 , 9 , �8, 9) : 8 ∈ [:], 9 ∈ [ℓ ]},
SLin = {(�8 , 9 , �8, 9) : 8 ∈ [:], 9 ∈ [ℓC ]},
SQuad = {(�8 , 9 , �8, 9+1) : 8 ∈ [:], 9 ∈ [ℓC − 1]},
Sout = {(�8 , 9+ℓC−ℓ , �8 , 9) : 8 ∈ [:], 9 ∈ [ℓ ]}.

• Run SetupLin(ck′,Sin) as follows. Let PLin = P(SLin) defined as in Theorem 6.46. Then,
run SetupLin as defined in [WW24b, Construction 4.23] with the above PLin. Obtain
ckin.

• Run SetupLin(ckbase ,SLin) as before but over all terms on ckbase. Obtain ckLin.

• Run SetupQuad(ckbase ,SQuad) as follows. Let PQuad = P(SQuad) defined as in Theo-
rem 6.47. Then, run SetupQuad as defined in [WW24b, Construction 4.38] with the
above PQuad. Obtain ckQuad.

• Finally, run SetupQuad(ck′,Sout) (again over ck′, the of terms from ck0 and ckbase), Obtain
ckout.

Output
ck := ck0 ∪ ckbase ∪ ckin ∪ ckLin ∪ ckQuad ∪ ckout.

ProjSetup(1� , 1:ℓ , �): As � ∈ ℐ ′ as defined in Theorem 6.33, we have that � = {8(ℓ − 1) +
1, . . . , 8ℓ} for some 8 ∈ [:].

Run (ck, td0 , td1 , td2) ← ProjSetup(1� , 1:ℓ , (�8 ,ℓ , �8 ,ℓ , �8 ,ℓ )) as defined below. Then, output
(ck, td = td0).
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ProjSetup(1� , 1:ℓ , (�0 , �1 , �2)):

• Run (ck0 , td0) ← PC.ProjSetup(1� , 1:ℓC , �0).
• Sample random B1 ,B� ,B� ←$ F2�×2� and let B∗

�
= B−1

�
, B∗

�
= B−1

�
and B∗1 = B−1

1

• Split B� =

[
B�,1

B�,2

]
where B�,1 ,B�,2 ∈ F�×2�. Similarly, split B∗

�
=

[
B∗
�,1 B∗

�,2

]
where

B∗
�,1 ,B

∗
�,2 ∈ F2�×�. Note that, by construction, B�,1·B∗�,1 = B�,2·B∗�,2 = I� and thatB�,1·

B∗
�,2 = B�,2 · B∗�,1 = 0�. Define B1,1 ,B1,2 ,B�,1 ,B�,2 ∈ F�×2� and B∗1,1 ,B

∗
1,2 ,B

∗
�,1 ,B

∗
�,2 ∈

F2�×� analogously.

• Sample S1,1 , S�,1 , S�,1 , S1,2 , S�,2 , S�,2 ←$ F�×:ℓC . Let P�1 ,P�2 be the projection matrices
for the sets �1, �2, respectively.

T1 ← B∗1,1 · S1,1 + B∗1,2 · S1,2 · P�1 ,

T� ← B∗�,1 · S�,1 + B∗�,2 · S�,2 · P�2 ,

T� ← B∗�,1 · S�,1 + B∗�,2 · S�,2 · P�2 .

• Finally, let T∗ ← T� ⊗ T� ∈ F4�2×ℓ2
C .

The remaining terms are computed from ck0 and the above terms exactly as in Setup.
We also define, as construction-specific trapdoors, td1 ← B1,2 and td2 ← (B�,2 ,B�,2).
These trapdoors are linked to �1, �2 respectively and we make them explicit as they play
a role in the security proof. However, they not used for extractability or projection
when considering the scheme as a whole. Output the commitment key ck and trapdoors
(td0 , td1 , td2).

FuncProve(ck,x, 5 ∈ ℱ:,ℓC ):

• Parse 5 = (C1 , . . . ,C:) and split x = (x8)8∈[:]. Evaluate y8 ← C8(x8) and let z8 ∈ FℓC be
the trace of the 8-th computation, i.e., the values of all wires when C8(x8) is evaluated.
Note that z8 = x8|z8 ,C |y8 where z8 ,C ∈ FℓC−2ℓ .

• Commit to the computation trace of z← z1| · · · |z: in the type-I and type-II keys,

�1 ← [T1]2 z, �2 ← ([T�]1 z, [T�]2 z) .

• Let B8 : FℓC → FℓC be given by B(z) = (I1 , . . . , Iℓ , 0ℓC−ℓ ) be a function that projects
the first ℓ coordinates of z into the first ℓ coordinates. Define B : F:ℓC → F:ℓC to
be the parallel evaluation of B8 , which is a Sin-separable linear function. Let now
zin = x1|0ℓC−ℓx,w | · · · |x:|0ℓC−ℓx,w be a concatenation of input vectors padded appropriately.
Compute an input projection proof, given by �in ← OpenLin((ck′, ckin), zin , B).

• Compute a linear proof for consistency between �1 and �2. This proof is computed
as �Lin ← OpenLin((ckbase , ckLin), z, 83)where 83 : F:ℓC → F:ℓC is the identity function.
Note that id is SLin-separable.
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• Let F8 : FℓC → FℓC be the “next wire function” of circuit C8 , such that the 9-th output of
F8(z8) is the result of evaluating the 9-th gate of C8 on the 9 − 1 first inputs. Define F :
F:ℓC → F:ℓC as F(z1 , . . . , z:) = (F1(z1), . . . , F:(z:)). Note that F is a SQuad-separable
quadratic function. Compute a quadratic gate proof�Quad ← OpenQuad((ckbase , ckQuad), z, F).

• Let ?8 : FℓC → FℓC be given by ?(z) = (IℓC−ℓ+1 , . . . , IℓC , 0ℓC−ℓ ) be a function that projects
the last ℓ coordinates of z into the first ℓ coordinates. Define ? : F:ℓC → F:ℓC to be
the parallel evaluation of ?8 . Note that ? is a Sout-separable linear (and therefore also
quadratic) function. Compute an output projection proof from the type, given by
�out ← OpenQuad((ck′, ckout), z, ?).

Output �← (�1 , �2 ,�in ,�Lin ,�Quad ,�out).

FuncVer(ck, com, comH , 5 ,�):
Parse � = (�1 , �2 ,�in ,�Lin ,�Quad ,�out) and output 1 if all the following checks pass:

• VerLin((ck′, ckin), com, �2 , B ,�in).
• VerLin((ckbase , ckLin), �1 , �2 , 83,�Lin).
• VerQuad((ckbase , ckQuad), �2 , �1 , F,�Quad).
• VerQuad((ck′, ckout), �2 , comH , ?,�out).

PreFuncVer(ck, 5 ):
Run the preprocessing algorithms for B, 83, F and ?, respectively:

• ck 5 ,in ← PreVerLin((ck′, ckin), B).
• ck 5 ,Lin ← PreVerLin((ckbase , ckLin), 83).
• ck 5 ,Quad ← PreVerQuad((ckbase , ckQuad), F).
• ck 5 ,out ← PreVerQuad((ck′, ckout), ?).

Output ck 5 ← (ck 5 ,in , ck 5 ,Lin , ck 5 ,Quad , ck 5 ,out)

EffFuncVer(ck 5 , com, comH ,�):
Parse � = (�1 , �2 ,�in ,�Lin ,�Quad ,�out) and output 1 if all the following checks pass:

• EffVerLin(ck 5 ,in , com, �2 ,�in).
• EffVerLin(ck 5 ,Lin , �1 , �2 ,�Lin).
• EffVerQuad(ck 5 ,Quad , �2 , �1 ,�Quad).
• EffVerQuad(ck 5 ,out , �2 , comH ,�out).

Lemma 6.48. Assume that the MDDH�,:ℓC ,2� holds over bgp. Then, PCFC satisfies setup indis-
tinguishability.

Proof. First, note that ckbase satisfies setup indistinguishability as proven in Theorem 6.37
and [WW24b, Theorem 4.9]. Second, note that the extensions to the commitment key by
the algorithms Lin and Quad can be sampled in a black-box way from ckbase and do not
vary in projective mode. Therefore, ck satisfies setup indistinguishability. �
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Lemma 6.49. PCFC satisfies CFC correctness (Theorem 4.8).

Proof. The proof follows from [WW24b] as we rely on the correctness of Lin and Quad, and
our modifications on the projective matrices (Theorems 6.46 and 6.47) do not affect any of
their correctness properties. We omit the details. �

Lemma 6.50. PCFC satisfies CFC efficient verification (Theorem 4.5) where EffFuncVer runs in
time O

(
� · �2) .

Proof. Follows from the descriptions of PreFuncVer(ck, �) and EffFuncVer(ck� , com,�), as
well as from the efficient verification properties of the Lin and Quad proof systems. �

Before proving projective chain binding, we state a short lemma about the individual
proof systems.

Lemma 6.51. Let Lin and Quad, be as defined in [WW24b] and modified in our PCFC construction.
Then, Lin satisfies generalized linear chain binding (Theorem 6.44) and Quad satisfies generalized
quadratic chain binding (Theorem 6.45).

Proof. The proof follows from [WW24b] and from our definitions of projective matrices.
The main difference with respect to the original notions is that we allow the adversary
to have the trapdoor of the commitment keys. We argue that this does not invalidate the
security of the proof systems, as every computational step in the original proofs of linear
chain binding ([WW24b, Theorem 4.25]) and quadratic chain binding ([WW24b, Theorem
4.39]) relies on a MDDH-type assumption whose challenge is on a matrix that is crafted in
a black-box way from the original commitment key ck0. More in detail, we have that for
the proof of linear chain binding:

• The first computational step (Lemma 4.28) uses A as a Ker-DH challenge, which is
sampled uniformly as A← F�×(�+1).

• The second computational step (Lemma 4.31) uses (Ŝ2 , Z
) as a MDDH challenge. Ŝ2 is
not included in td, and Z
 is sampled black-box from ck0.

For the proof of quadratic chain binding:

• The first computational step (Lemma 4.43) uses A as a Ker-DH challenge, exactly as
before.

• The second computational step (Lemma 4.46) uses (S�,2 , Z) as a MDDH challenge. As
before, S2,2 is not included in td, and Z is sampled black-box from ck0.

�

Theorem 6.52. Assume that the KerDH�,:ℓC and the MDDH�,:ℓC ,2� assumptions hold over bgp.
Then, our construction PCFC satisfies projective chain binding for the class 5 ∈ ℱ:,ℓC (c.f. Theo-
rem 6.33).
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Hybpcb
A (�):

(ck, td0 , td1 , td2) ← ProjSetup(1� , 1:ℓC , (�ℓ , �ℓ , �ℓ ))
( 5 , com, com′, comH , com′H ,�,�′) ← A(ck, td0)
(�1 , �2 ,�in ,�Lin ,�Quad ,�out) ← �

(�′1 , �′2 ,�′in ,�′Lin ,�
′
Quad ,�

′
out) ← �′

assert FuncVer(ck, com, comH , 5 ,�) = 1
assert FuncVer(ck, com′, com′H , 5 ,�′) = 1

assert Proj(td0 , com) = Proj(td0 , com′)
assert Proj(td0 , comH) ≠ Proj(td0 , com′H)

// Checkpoint line

return 1

Hybin
A(�):

// as Hybpcb
A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
return 1

Figure 6.6: First set of games for the proof of Theorem 6.52. We highlight changes between games.

Proof. We start by defining the projection sets that we will use in the proof

� 9 = {(8∗ − 1)ℓC + 1, . . . , (8∗ − 1)ℓC + 9}.

Note that
��� 9 �� = 9. We also recall that � = (�1 , �2 ,�in ,�Lin ,�Quad ,�out). We define a

sequence of hybrid games in Figure 6.6, Figure 6.7. The initial hybrid game, Hybpcb
A (�), is

the projective chain binding game from Theorem 6.19. Throughout the hybrid games, the
adversary obtains the primary trapdoor td0, but not the internal trapdoors td1 , td2, which
are only available to the challenger. This is crucial in the proof as if the adversary had
td1 , td2, setup indistinguishability for the corresponding subsets �1 , �2 would not hold, and
several game transitions rely on this property. On the other hand, the projection set �0
is fixed throughout the entire sequence of games. We progress through the hybrids as
follows.

Hybpcb
A (�) → Hybin

A(�): This step follows by the linear binding property of Lin (Theo-
rem 6.51) for the relation in, i.e., the identity map between the base key (ck0) and the
type-II key commitments to the internal circuit wires. To see this, note that ckin is sampled
on Sin and (�ℓ , �ℓ ) ∈ Sin. Next, we provide the details of the reduction for this game hop
— the remaining steps follow an identical pattern and we will only give a proof sketch.

LetA be a PPT adversary that wins Hybpcb
A (�) but does not win Hybin

A(�). Then, we can
construct a PPT adversary ℬin that wins Hybin

A(�) as follows:

• ℬLin receives the key (ck′, ckLin) and the trapdoor td0.

• ℬLin simulates the remaining part of the commitment key given ck′, ckLin and generates
a complete ck. Then, it calls A(ck, td0) and receives the proofs �,�′. It parses the
commitments com, com′, �2 , �′2 and the Lin proofs �in ,�′in from their respective proofs.

• ℬLin simply outputs (B, com, com′, �2 , �′2 ,�in ,�′in) to its challenger, where B is the identity
function for the first ℓ coordinates (clearly B ∈ ℱ Sin ).
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Hyb9 ,0A (�), ℓ ≤ 9 ≤ ℓC :
(ck, td0 , td1 , td2) ←

ProjSetup(1� , 1:ℓC , (�ℓ , � 9 , � 9))
// then, as Hybpcb

A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
return 1

Hyb9,1A (�), ℓ ≤ 9 ≤ ℓC − 1:
(ck, td0 , td1 , td2) ←

ProjSetup(1� , 1:ℓC , (�ℓ , � 9+1 , � 9))
// then, as Hybpcb

A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
return 1

Hyb9 ,2A (�), ℓ ≤ 9 ≤ ℓC − 1:
(ck, td0 , td1 , td2) ←

ProjSetup(1� , 1:ℓC , (�ℓ , � 9+1 , � 9))
// then, as Hybpcb

A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
assert Proj(td1 , �1) = Proj(td1 , �′1)
return 1

Hyb9,3A (�), ℓ ≤ 9 ≤ ℓC − 1:
(ck, td0 , td1 , td2) ←

ProjSetup(1� , 1:ℓC , (�ℓ , � 9+1 , � 9))
// then, as Hybpcb

A (�) until “checkpoint line”

assert Proj(td1 , �1) = Proj(td1 , �′1)
return 1

Hyb9 ,4A (�), ℓ ≤ 9 ≤ ℓC − 1:
(ck, td0 , td1 , td2) ←

ProjSetup(1� , 1:ℓC , (�ℓ , � 9+1 , � 9+1))
// then, as Hybpcb

A (�) until “checkpoint line”

assert Proj(td1 , �1) = Proj(td1 , �′1)
return 1

Hyb9,5A (�), ℓ ≤ 9 ≤ ℓC − 1:
(ck, td0 , td1 , td2) ←

ProjSetup(1� , 1:ℓC , (�ℓ , � 9+1 , � 9+1))
// then, as Hybpcb

A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
assert Proj(td1 , �1) = Proj(td1 , �′1)
return 1

Hybout0
A (�):

(ck, td0 , td1 , td2) ←
ProjSetup(1� , 1:ℓC , (�ℓ , �ℓ , �ℓC ))

// then, as Hybpcb
A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
return 1

Hybout1
A (�):

(ck, td0 , td1 , td2) ←
ProjSetup(1� , 1:ℓC , (�ℓ , �ℓ , �ℓC ))

// then, as Hybpcb
A (�) until “checkpoint line”

assert Proj(td2 , �2) = Proj(td2 , �′2)
assert Proj(td0 , comH) = Proj(td0 , com′H)

return 1

Figure 6.7: Second set of games for the proof of Theorem 6.52. We highlight changes between games.
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It is evident thatℬLin runs in polynomial time. IfA wins in Hybpcb
A (�) but not in Hybin

A(�),
the commitments com, com′ and proofs �in ,�′in output byA must satisfy:

• Proj(td0 , com) = Proj(td0 , com′),
• Proj(td2 , �2) ≠ Proj(td2 , �′2),
• VerLin((ck′, ckin), com, �2 , B ,�in),
• VerLin((ck′, ckin), com′, �′2 , B ,�

′
in).

Hence, ℬLin wins the generalized linear binding game (Theorem 6.44) ifA is successful.
We conclude:

Adv0
PCFC,A(�) ≤ Advin

PCFC,A(�) + Advlbind
Lin,ℬLin

(�).

Hybin
A(�) → Hybℓ ,0A (�): This is only a renaming step; the games are identical for the case

9 = ℓ that we consider. Therefore,

Advin
PCFC,A(�) = Advℓ ,0PCFC,A(�).

Hyb9 ,0A (�) → Hyb9 ,1A (�): For any 9 ∈ {ℓ , . . . , ℓC − 1}, this step readily follows by the setup
indistinguishability property of PCFC (Theorem 6.48). We have that, for some PPT
adversary ℬsind,

Advj,0
PCFC,A(�) ≤ Advj,1

PCFC,A(�) + Advsbind
PCFC,ℬsind

(�).

Hyb9 ,1A (�) → Hyb9 ,2A (�): For any 9 ∈ {ℓ , . . . , ℓC − 1}, this step follows by the generalized
quadratic chain binding of Quad (Theorem 6.51), as ckQuad is sampled on SQuad and
(� 9 , � 9+1) ∈ SQuad. We have that, for some PPT adversary ℬQuad,

Advj,1
PCFC,A(�) ≤ Advj,2

PCFC,A(�) + Advqbind
Quad,ℬQuad

(�).

Hyb9 ,2A (�) → Hyb9 ,3A (�): This step is a simplification of Hyb9 ,2A (�)where we drop a verifica-
tion condition on �2. Therefore,

Advj,2
PCFC,A(�) ≤ Advj,3

PCFC,A(�).

Hyb9 ,3A (�) → Hyb9 ,4A (�): For any 9 ∈ {ℓ , . . . , ℓC − 1}, this step again follows by the setup
indistinguishability property of PCFC (Theorem 6.48). We have that, for some PPT
adversary ℬsind,

Advj,3
PCFC,A(�) ≤ Advj,4

PCFC,A(�) + Advsbind
PCFC,ℬsind

(�).

Hyb9 ,4A (�) → Hyb9 ,5A (�): For any 9 ∈ {ℓ , . . . , ℓC − 1}, this step follows by the generalized
linear chain binding of Lin (Theorem 6.51), as ckLin is sampled on SLin and (� 9 , � 9) ∈ SLin.
We have that, for some PPT adversary ℬLin,

Advj,4
PCFC,A(�) ≤ Advj,5

PCFC,A(�) + Advlbind
Lin,ℬLin

(�).
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Hyb9 ,5A (�) → Hyb9+1,0
A (�): This step is a simplification of Hyb9 ,5A (�)where we drop a verifi-

cation condition on �1. Therefore,

Advj,5
PCFC,A(�) ≤ Advj+1,0

PCFC,A(�).

Next, we bound the final sequence of games, starting from HybℓC ,0A (�).

HybℓC ,0A (�) → Hybout0
A (�): In this game, we change the extraction sets from (�ℓ , �ℓC , �ℓC ) to

(�ℓ , �ℓ , �ℓC ). Again, the step follows by the setup indistinguishability property of PCFC
(Theorem 6.48). We have that, for some PPT adversary ℬsind,

Advℓc ,0PCFC,A(�) ≤ Advout0
PCFC,A(�) + Advsind

PCFC,ℬsind
(�).

Hybout0
A (�) → Hybout1

A (�): Finally, this step follows by the generalized quadratic chain
binding of Quad (Theorem 6.51) for the output vector, as ckout is sampled on Sout and
(�ℓ , �ℓC ) ∈ Sout. We have that, for some PPT adversary ℬQuad,

Advout0
PCFC,A(�) ≤ Advout1

PCFC,A(�) + Advqbind
Quad,ℬQuad

(�).

Hybout1
A (�): In this game, we have the following contradicting conditions:

• Proj(td1 , comH) ≠ Proj(td1 , com′H) (present since Hybpcb
A (�)), and

• Proj(td1 , comH) = Proj(td1 , com′H).

Hence, the advantage of any adversary in this game is Advout1
PCFC,A(�) = 0.

The theorem follows by collecting all the bounds and noting the relevant computational
assumptions that are used at each step. �
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7

Fully-Succinct Multi-Key Homomorphic
Signatures

In this chapter, we present the first fully-succinct multi-key homomorphic signature that is secure
under standard falsifiable assumptions. The results are based on the article “Fully-Succinct
Multi-Key Homomorphic Signatures from Standard Assumptions” [ABF24].

The chapter is structured as follows. In Section 7.1 we introduce a summary of con-
tributions, followed by a technical overview in Section 7.2. In Section 7.3, we introduce
multi-key homomorphic signatures and their properties. In Section 7.4, we describe our
construction of a fully-succinct MKHS and prove its security. Finally, in Section 7.5,we
extend our construction to support multi-hop evaluation and discuss several possible
instantiations for our MKHS from diverse choices of primitives.

7.1 Contributions

Our construction of fully-succinct multi-key homomorphic signatures relies on a novel
combination of standard digital signatures, succinct functional commitments (FC) [LRY16],
and batch arguments for NP (BARG) [KPY19, CJJ21]. Our MKHS allows the evaluation
of the same functions supported by the FC scheme, and inherits succinctness from the
succinctness of the FC and of the BARG. We present a simplified version of our main
theorem below.

Theorem 7.11 (simplified). Let FC be a functional commitment scheme for a class of functions ℱ ,
BARG a somewhere-extractable batch argument for NP, SEC a somewhere extractable commitment,
and Σ a digital signature scheme. Then, there exists an adaptively-secure multi-key homomorphic
signature MKHS for ℱ . Moreover, if the BARG generates proofs of size BBARG and the FC generates
proofs of size BFC, then the signatures produced by MKHS have size BMKHS ≈ BFC + BBARG.

Both BARGs and FCs have been in the spotlight in recent years and currently offer
several instantiations fromdifferent (falsifiable) assumptions, which in turn yieldMKHS for
all functions from a variety of assumptions. For instance, we can instantiate ourMKHS from
building blocks based on correlation-intractable hash functions and probabilistic checkable
proofs, such as the BARGs from [CJJ21, CJJ22, CGJ+23] and an FC for circuits based on
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the SNARG for P from [KLVW23], to obtain constructions from standard assumptions
such as LWE or subexponential DDH. Alternatively, we can use the algebraic BARG of
[WW22] based on the :-Lin assumption, and the algebraic FC from [BCFL23] based on
the (falsifiable) HiKer assumption, obtaining a pairing-based construction for unbounded-
depth circuits. We summarize these instantiations below.

Corollary 7.18 (simplified). Assuming the hardness of either (1) subexponential DDH, or (2)
learning with errors, there exists a multi-key homomorphic signature MKHS for boolean circuits of
unbounded depth 3 with public parameter size poly(�, log ℓ ) and signature size poly(�, log ℓ ) · 3.

Corollary 7.19 (simplified). Assuming the hardness of HiKer and :-Lin for : ≥ 2, there exists a
multi-key homomorphic signature MKHS for arithmetic circuits of unbounded depth 3 and bounded
width F from algebraic building blocks, with public parameter size O

(
F5) and signature size

O
(
� · 32) + poly(�).

Alternatively, using the FC from [WW24b] one obtains poly(�) sized signatures from
the bilateral :-Lin assumption, with public parameters that grow with the circuit size
as O

(
| 5 |5

)
. It is possible to reduce the signature size further, to O

(
�2) , by also using the

BARG from Chapter 6.

Additional Properties. Compared to the weakly succinct scheme of [FMNP16], ourMKHS
schemes achieve a variety of useful properties. First, we do not need to bound a priori the
number of values to be signed, but only the class of functions (to the extent required by
the FC); this feature is useful in applications where one computes on portions of very large
data (e.g., sliding-window statistics on unbounded data streams). Second, our schemes
are secure against adversaries that can adaptively corrupt users, whereas [FMNP16] can
only handle non-adaptive corruptions. Third, our MKHS have efficient verification time,
after preprocessing the function; this is similar to [FMNP16] though we support a more
flexible preprocessing model (see Section 7.3.2). Furthermore, all our instantiations allow
multi-hop sequential composition of different functions (Section 7.5.1) and can be compiled
to provide context-hiding via a generic NIZK-based technique (Theorem 7.10).

Beyond our result for MKHS, the techniques underlying our construction present, to
the best of our knowledge, a novel approach for building an advanced cryptographic
primitive that was only known to be (with full succinctness) realizable from SNARKs. We
expect that our techniques can be applied in other settings, leading to further constructions
of advanced primitives from standard assumptions.

7.2 Technical Overview

Background: Labeled Programs. In a multi-key homomorphic signature scheme, the
evaluator must declare the evaluated function as a labeled program [GW13]. A labeled pro-
gram is specified by a tuple ( 5 , ℓ1 , . . . , ℓℓ ) where 5 :ℳℓ →ℳℓH is a function represented
by an arithmetic or boolean circuit, and the �8 are labels of the inputs. Without loss of
generality, we assume that �8 := (id8 , �8), where id8 is an identity and �8 an arbitrary string.
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Upon evaluating the homomorphic signature, the ℓ messages <1 , . . . , <ℓ ∈ ℳ that are
collected by the evaluator are each uniquely associated to labels �1 , . . . , �ℓ , and therefore to
identities id1 , . . . , idℓ (not necessarily all distinct). Additionally, each of these identities is
associated to a public key vk8 , that can be used to verify the authenticity of a message-label
pair (<8 , �8). Program labelling is required to properly define both correctness and security
of MKHS, since e.g. otherwise the order in which the <8’s are input to 5 is unspecified.

Warm-Up: Aggregating Signatures with BARGs . The initial inspiration for our MKHS
construction lies in the mechanism to construct aggregate signatures from Waters and Wu
[WW22] which is based on BARGs for NP. In an aggregate signature scheme [BGLS03], an ag-
gregator (or also evaluator) can takemultiplemessage-signature pairs (<1 , �1), . . . , (<ℓ , �ℓ )
from different users, and compress all the signatures into a succinct �Agg.

To construct aggregate signatures, [WW22] start from any digital signature scheme
Σ = (KeyGen, Sign,Ver). Then, to sign messages, aggregate signatures, and verify the
aggregation proof, their algorithm broadly proceeds as follows:

• Aggregate: To aggregate ℓ message-signature pairs, (<1 , �1), . . . , (<ℓ , �ℓ ), let x8 = (<8 , vk8)
be the statements and w8 = �8 be the witnesses for the circuit C(x8 , w8) that checks:

Σ.Ver(vk8 , <8 , �8) = 1

Then, the aggregate signature �Agg is a BARG proof on (C , {x8}, {w8}).

• Verify: To verify �Agg, one runs the BARG verification algorithm on (C , {x8}).

A mechanism to aggregate signatures can be seen as the “first step” of the evaluation of
a fully-fledged MKHS. Indeed, similarly to aggregate signatures, in MKHS one also needs
to prove that all signatures and messages are valid in a succinct manner. However, while in
aggregate signatures the verifier knows all the messages (<1 , . . . , <ℓ ), in MKHS one only
knows the result y = 5 (<1 , . . . , <ℓ ). Therefore the evaluation step must additionally prove
in a succinct manner the correctness of 5 ’s computation. This is what makes the realization
of fully succinct MKHS challenging. A natural attempt to deal with this problem is to
extend the BARG circuit by placing <8 in the witness, and by additionally proving that
y = 5 (<1 , . . . , <ℓ ). An example of such a language could be the following:

Σ.Ver(vk8 , <8|�8 , �8) = 1 ∧ y = 5 (<1 , . . . , <ℓ ),

where x8 = (�8 , vk8 , 5 , y) and w8 = (<8 , �8). Unfortunately, the computation of 5 can
be “global”, i.e., involve messages from all the witnesses, and thus the language is not
compatible with that supported by BARGs.

Proving f (m1 , . . . ,mℓ): Functional Commitments. To address the problem of 5 being
global, our second idea is to resort to functional commitments (FCs). As described in Chap-
ter 4, a functional commitment scheme [LRY16] allows an entity to first commit to some
input x in com, and then open com to 5 (x) for some function 5 ∈ ℱ , where ℱ is the class
of functions supported by the scheme. Importantly for our goal, FCs ensure commitments
and openings to be succinct and can be realized from falsifiable assumptions.

157



7. Fully-Succinct Multi-Key Homomorphic Signatures

By using FCs, the evaluator could create a commitment com to the inputs of the
computation (<1 , . . . , <ℓ ) and then use the opening feature to prove the evaluation y =

5 (<1 , . . . , <ℓ ). This way we can take this “global” task outside of the BARG. Unfortunately,
doing two separate proofs, one for the BARG and one for the FC, does not suffice. The issue
is that there is no connection between the <8 committed inside the FC and the messages
whose signatures are verified in the BARG circuitC , i.e., inΣ.Ver(vk8 , <8|�8 , �8). To integrate
FCs and BARGs into a working solution, we need to be able to link the commitment com to
the messages<8 that are in the witnesses w8 of C . One natural example of such a connection
may consist of showing that, at every local step 8, com opens to message <8 at position 8
(i.e., à la vector commitment), a local check that could be easily integrated in the circuit
C(x8 , w8) and proven with a BARG. This approach, while giving correctness, is unsuccessful
for the security proof. At a very high level, the MKHS adversary produces a forgery which
contains a commitment com∗ and a functional-opening �∗ to y∗ ≠ 5 (<1 , . . . , <ℓ ). To break
the security of the FC we would need to come up with another functional-opening to a
different value, say the honest output 5 (<1 , . . . , <ℓ ). The reduction could compute this
by itself if we had the guarantee that com∗ is a commitment to (<1 , . . . , <ℓ ) but this is not
ensured; we can only use the BARG to extract, for a single index 8 at a time, a position-
opening to a validly signed <8 at position 8 in com∗. This is however not enough to break
the evaluation binding of the FC.

Our Solution: Proving FC updates in the BARG. To get around the above problem, our
approach consists of iteratively computing com inside the BARG circuit. We start by defining a
sequence of partial commitments com0 , . . . , comℓ , where the 8-th commitment commits to
the first 8 messages. Namely, let com8 ← FC.Com(ck, (<1 , . . . , <8 , 0, . . . , 0)). Then, at step 8
of the BARG proof, C(x8 , w8) verifies a proof �8 that com8 and com8−1 only differ on <8 at
position 8. In other words, that if we update com8−1 with <8 at position 8, then we obtain
com8 .

For this idea to work, we require two properties from our FC. One, determinism, such
that we can compare commitments without having to open them. Two, local updatability,
such that there exists an efficient update verification algorithm FC.VerUpd that runs in
constant (or at least sublinear) time in ℓ . Moreover, update verification should only require
a succinct section ck8 of the commitment key. We describe a simplified version of the
resulting BARG circuit in Figure 7.1.

Given the description of C , our construction of MKHS can be summarized as follows:

• Sign: To sign a message <8 with label �8 under key sk8 , compute and output �8 ←
Σ.Sign(sk8 , <8|�8).

• Evaluate: To evaluate ( 5 , �1 , . . . , �ℓ ) on ℓ message-signature pairs (<1 , �1), . . . , (<ℓ , �ℓ ),
compute:

– An FC commitment com← FC.Com(ck, (<1 , . . . , <ℓ )).
– A BARG proof �� for C(x1 , w1) ∧ · · · ∧ C(xℓ , wℓ ).
– An FC opening proof � 5 that com opens to y = 5 (<1 , . . . , <ℓ ) on 5 .
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Description of C(x, w) (simplified):
Statement: x = (vk8 , ck8 , �8 , 8)
Witness: w = (<8 , �8 ,�8 , com8−1 , com8)
Circuit:

• If 8 = 1, check that com8−1 = FC.Com(ck, 0).

• If 8 = ℓ , check that com8 = com.

• Check that:

Σ.Ver(vk8 , <8|�8 , �8) = 1

∧ FC.VerUpd(ck8 , 8 , com8−1 , 0, com8 , <8 ,�8) = 1

Figure 7.1: Simplified description of the BARG circuit C in our MKHS construction. The commitment com
is hardwired into the circuit.

Then, the output signature is � 5 ,H = (com,�� ,� 5 ).

• Verify: To verify � 5 ,H , simply check the BARG and FC proofs w.r.t. com.

We note that our actual construction in Section 7.4 is slightly more complex, as it
additionally involves a somewhere extractable commitment scheme (SEC)whichwe require
to connect the consecutive steps 8 − 1 and 8 of the BARG and for the security proof to go
through.

Security and Proof Strategy. The security notion for MKHS considers adversaries that
can make signing queries for messages and labels of their choice and it captures that it
should be hard for the adversary to (1) claim valid messages and signatures that were
never received from the signing oracle, and (2) forge the output of the computation of the
labeled program ( 5 , �1 , . . . , �ℓ ). The notion is adaptive as the adversary may arbitrarily
expose parties’ secret keys, yet compromised keys cannot be involved in a forgery.

Our security proof proceeds by partitioning the winning condition in multiple events,
according to the type of forgery that is produced by the adversary, and then handles each
event separately. The most interesting component of the proof, and arguably the hardest
technical challenge of this work, is to deal with the event when the adversary produces
a forgery for y ≠ 5 (<1 , . . . , <ℓ ), where the (deterministic) commitment to the messages
com∗ output byA is dishonest, com∗ ≠ FC.Com(ck, (<1 , . . . , <ℓ )).

To bound the probability of this event, the general proof strategy is to show that
all partial commitments com8 for 8 ∈ [ℓ ]must have been computed honestly. We define
multiple hybrids for each index 8, which implement a “slidingwindow” strategy1 wherewe
roughly: (1) extract from both the BARG and the SEC at step 8, (2) compare the extracted
com8 to their honest counterparts, and (3) extract the message <8 and signature �8 (a
potential forgery) from the adversary’s output, such that we can certify the validity of
the 8-th update. Then, we “reboot” the BARG and SEC extraction and start again at step
1 This strategy is similar than the one followed by the proof of security of our PCFC in Chapter 6

159



7. Fully-Succinct Multi-Key Homomorphic Signatures

8 + 1. From the above proof strategy, steps (1) and (2) follow the blueprint of a line of work
on succinct delegation schemes (also known as SNARGs for P) [KPY19, GZ21, KVZ21,
CJJ22, KLVW23], whereas step (3) requires to go a few steps beyond. Notably, in contrast to
delegation schemes where the proven computation is deterministic, in our MKHS scheme
the statement includes a non-deterministic part, messages and signatures, that are not
available to the verifier.

7.3 Multi-Key Homomorphic Signatures

In this section, we recall the definition of Multi-Key Homomorphic Signatures (MKHS)
[FMNP16].

As explained above, a MKHS allows each signer to sign a set of messages {<id,8} so
that an evaluator can compute a function 5 on messages signed by different users and
to produce a signature that certifies the correctness of the result. Since the verifier does
not see the original inputs one must carefully define what does it mean that a value H
is the correct output of a function 5 on some signed messages. Following the work of
Gennaro and Wichs [GW13] on (single-key) homomorphic authenticators, even in the
multi-key setting one can use the notion of labeled programs. Informally speaking, this
means that a user id signs each message <id,8 along with a “tag” tg8 and, in the MKHS
case, her identity id. The pair �8 = (id, tg8) is called the “label” and is a unique identifier
of the signed message. To verify an output H, one checks the signature not only w.r.t. the
function 5 but also with the labels (ℓ8) of its inputs—what is called a labeled program P .
This way, a successful verification of the tuple (P = ( 5 , �1 , . . . , �ℓ ), H, � 5 ,H)means that H
is the correct output of 5 on some messages signed by the corresponding user with label
�1 , . . . , �ℓ respectively.

Definition 7.1 (Labeled Programs for MKHS [FMNP16]). A labeled program P is a tuple
( 5 , �1 , . . . , �ℓ ) such that 5 :ℳℓ →ℳℓH is a function of ℓ variables (e.g., a circuit) and �8 ∈ ℒ
is a label for the 8-th input of 5 . Let 583 : ℳ → ℳ be the identity function and � ∈ ℒ be any
label. We denote by ℐ� = ( 583 , �) the identity program with label �. Labeled programs can be
composed as follows: given P1 , . . . ,P: and a function 6 :ℳC →ℳℓH , the composed program,
denoted P ∗ = 6(P1 , . . . ,P:), is the one obtained by evaluating 6 on the collection of C outputs of
P1 , . . . ,P: . The labeled inputs of P ∗ are the distinct labeled inputs of P1 , . . .P: , where inputs
with the same label are converted to a single input. A program P = ( 5 , �1 , . . . , �ℓ ) can be expressed
as the composition of ℓ identity programs, i.e., P = 5 (ℐ�1 , . . . , ℐ�ℓ ).

In MKHS, each label � is a pair (id, tg) where id ∈ ℐ D is a user’s identity and tg ∈ T is a
tag; thus the label space is ℒ = ℐ D × T . We denote id ∈ P if there is at least one label of the
program P with identity id, i.e., for P = ( 5 , �1 , . . . , �ℓ ), id ∈ P iff there exists �8 = (id8 , tg8) such
that id8 = id.

Definition 7.2 (Multi-Key Homomorphic Signature). Let ℱ be a family of functions, ℐ D
an identity space, and T a tag space. A Multi-Key Homomorphic Signature scheme for a family
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of functions ℱ , identity space ℐ D, and tag space T is a tuple of algorithms MKHS = (Setup,
KeyGen, Sign, Eval,Ver) such that:

Setup(1� ,ℱ , ℐ D , T ) → pp: On input the security parameter � and descriptions of ℱ , ℐ D , T ,
the setup algorithm outputs public parameters pp. We assume pp to be an input of all subsequent
algorithms, even if not specified.

KeyGen(pp) → (sk, vk): On input the public parameters pp, the key generation algorithm outputs
a secret signing key sk and a public verification key vk.

Sign(sk, <, �) → �: On input a signing key sk, a label � = (id, tg) ∈ ℒ, and a message < ∈ ℳ,
the signing algorithm outputs a signature �.

Eval( 5 , (P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ]) → � 5 ,H : Given a function 5 ∈ ℱ with ℓ inputs, and for each
input 8 a triple consisting of a labeled program P8 , the set of corresponding verification keys
{vkid}id∈P8 , a message <8 and a signature �8 , the evaluation algorithm outputs a new signature
� 5 ,H .

Ver(P , {vkid}id∈P , y, � 5 ,H) → 1: On input a labeled program P = ( 5 , �1 , . . . , �ℓ ), the set of
verification keys {vkid}id∈P of the users involved in P , a value y ∈ ℳℓH , and a signature � 5 ,H ,
the verification algorithm outputs 0 (reject) or 1 (accept).

A MKHS scheme should have authentication and evaluation correctness. The former
says that a freshly generated signature on (�, <) verifies correctly for < as the output of
the identity program ℐ�.

Definition 7.3 (Authentication correctness). For all public parameters pp← Setup(1� ,ℱ , ℐ D , T ),
keypair (sk, vk) ← KeyGen(pp), label � ∈ ℒ, message < ∈ ℳ, and identity program ℐ�, if
�← Sign(sk, <, �) then Ver(ℐ� , vk, <, �) = 1 holds with overwhelming probability.

Evaluation correctness instead says, roughly, that running Eval with a function 5 on
a tuple of valid signatures produces a new valid signature for the output. We consider
two classes of MKHS schemes: single-hop and multi-hop. Single-hop MKHS are schemes
where Eval can only be executed on signatures produced by Sign. In this case, evaluation
correctness ensures that, given a function 5 and signatures (�1 , . . . , �ℓ ) such that each
�8 verifies for <8 as the output of ℐ�8 , Eval produces a signature that verifies for y =

5 (<1 , . . . , <ℓ ) as the output of the labeled program P = ( 5 , �1 , . . . , �ℓ ).

Definition 7.4 (Single-Hop Evaluation correctness). Consider any public parameters pp←
Setup(1� ,ℱ , ℐ D , T ), any set {(vk8 , �8 , <8 , �8)}8∈[ℓ ] such that, for every 8 ∈ [ℓ ], vk8 is honestly
generated and Ver(ℐ�8 , vk8 , <8 , �8) = 1, and any function 5 ∈ ℱ . If y = 5 (<1 , . . . , <ℓ ), P =

( 5 , �1 , . . . , �ℓ ), and � 5 ,H = Eval( 5 , (ℐ�8 , vk8 , <8 , �8)8∈[ℓ ]) then Ver(P , {vkid}id∈P , y, � 5 ,H) = 1
with overwhelming probability.

Multi-hop MKHS instead allow to execute Eval on signatures produced by previous
executions of Eval. In this case, evaluation correctness ensures that, given a function 5

and triples (�1 , . . . , �ℓ ) such that each �8 verifies for <8 as the output of ℐ�8 , Eval produces
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a signature that verifies for y = 5 (<1 , . . . , <ℓ ) as the output of the labeled program
P = ( 5 , �1 , . . . , �ℓ ).

Definition 7.5 (Multi-Hop Evaluation correctness). Consider any public parameters pp←
Setup(1� ,ℱ , ℐ D , T ), any (P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ] such that all the verification keys are hon-
estly generated and, for every 8 ∈ [ℓ ], Ver((P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ]) = 1, and any function 5 ∈
ℱ . If y = 5 (<1 , . . . , <ℓ ), P = 5 (P1 , . . . ,Pℓ ), and � 5 ,H = Eval( 5 , (P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ])
then with overwhelming probability Ver(P , {vkid}id∈P , y, � 5 ,H) = 1.

Next, we define succinctness, which is the property that makes MKHS a nontrivial
primitive to realize. Intuitively, a MKHS is succinct if the size of the signatures generated
by Eval is much shorter than the input size of the evaluated function, e.g., polylogarithmic.
Our notion is parametric, as for FCs in Theorem 4.1.

Definition 7.6 (Succinctness). Let BMKHS : N4 → N be a function. A MKHS scheme MKHS
for a class of functions ℱ is BMKHS-succinct if for every honestly generated parameters pp, keys
and signatures, and any function 5 :ℳℓ →ℳℓH , 5 ∈ ℱ , the output � 5 ,H of Eval( 5 , ·) is of size
|� 5 ,H| ≤ BMKHS(�, ℓ , ℓH , | 5 |). Additionally, we say that MKHS is succinct if there exists a fixed
function BMKHS(�, ℓ , ℓH , | 5 |) = poly(�, log ℓ , log ℓH , >(| 5 |)).

We note that our succinctness definition is stronger than the one originally proposed
in [FMNP16] which allowed signatures to grow linearly (or polynomially) in the number C
of distinct users involved in the computation, but still logarithmically in the total number
of inputs.

7.3.1 Security

The security notion of multi-key homomorphic signatures intuitively models the fact that
an adversary, who can query signatures on messages of its choice to multiple users, can
only produce valid signatures that are either the ones it received, or ones that are obtained
by correctly executing the evaluation algorithm on genuine signatures. The adversary
may also corrupt users to obtain their secret keys, yet the alleged forgery cannot involve
verification keys of corrupted users.

Definition 7.7 (Unforgeability). Consider the security experiment HomUF-CMAA,MKHS(1�) in
Figure 7.2 between an adversaryA and a challenger. AMKHS scheme is unforgeable (HomUF-CMA-
secure) if, for all PPT adversariesA, we have Pr[HomUF-CMAA,MKHS(1�) = 1] ≤ negl(�).

The above notion of security, introduced by Fiore et al. [FMNP16], is adaptive insofar
as the adversary can make corruption queries at any point in the game. This notion is
stronger than the non-adaptive security achieved by the construction in [FMNP16], where
the adversary can perform corruption queries only on identities for which no signature
query had already been performed.
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Game HomUF-CMAA,MKHS(1�):

Setup: The challenger proceeds as follows:

• Initialize empty lists LID , LCorr , LSig ← ∅ and generate pp← Setup(1� ,ℱ , ℐ D , T ).
• RunA(pp). Next,A can make the following queries adaptively.

KeyGen queries OKeyGen(id): If id ∉ LID, generate (vkid , skid) ← KeyGen(pp), update
LID = LID ∪ {id}, and return vkid toA.

Signing queries OSign(�, <): Given � = (id, tg):

• If (�, ·) ∉ LSig, compute �� ← Sign(skid , �, <), update LSig := LSig ∪ (�, <), and
return �� toA.

• Else, if (�, ·) ∈ LSig, ignore the query.

Corruption queries OCorr(id): if id ∈ LID and id ∉ LCorr, update LCorr ← LCorr∪ id, and
return skid

Forgery: At the end of the game, A returns a tuple (P ∗ , y∗ , �∗) where P ∗ =

( 5 ∗ , �∗1 , . . . , �∗ℓ ).

Game output: Return 1 if and only if Ver(P ∗ , {vkid}id∈P ∗ , y∗ , �∗) = 1, {id ∈ P ∗} ∩
LCorr = ∅, and one of the following cases occurs:

• Type 1: ∃9 ∈ [ℓ ] such that (�∗
9
, ·) ∉ LSig (i.e.,A never made a query with label �∗

9
).

• Type 2: ∀8 ∈ [ℓ ] : (�∗
8
, <8) ∈ LSig but y∗ ≠ 5 ∗(<1 , . . . , <ℓ ).

Figure 7.2: Security experiment HomUF-CMAA,MKHS(1�).

7.3.2 Amortized efficiency

We give a definition of amortized efficiency for MKHS schemes. The issue is that in the
basic syntax of MKHS (and HS too) the verifier should read the description of the program
P which may take the same running time as the computation to be verified, especially in a
model of computation such as circuits. To address this, we consider the case in which one
can preprocess the labeled program P , independently of the signature to be verified, and
to reuse it. However, we observe that preprocessing the entire tuple P = ( 5 , �1 , . . . , �ℓ )
would not give any benefit because in MKHS labels are unique, and thus preprocessing
a function 5 for the evaluation on a set of labels �1 , . . . , �ℓ cannot be reusable. Therefore
we model preprocessing via two algorithms: one for the function 5 and one for the input
labels �1 , . . . , �ℓ and verification keys {vkid}id∈P , which benefits when running the same
function 5 on different set of signed inputs or when executing different functions on the
same set of signed inputs.

Definition 7.8 (Amortized efficiency). An MKHS scheme satisfies amortized efficiency if there
is a triple of algorithms (PrepFunc,PrepLabels, EffVer) such that:
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• For any labeled programP = ( 5 , �1 , . . . , �ℓ ), verification keys {vkid}id∈P , output y and signature
� 5 ,H such that Ver(P = ( 5 , �1 , . . . , �ℓ ), {vkid}id∈P , y, � 5 ,H) = 1 it holds that:

EffVer(PrepLabels(pp, {vkid}id∈P , (�1 , . . . , �ℓ )),PrepFunc(pp, 5 ), y, � 5 ,H) = 1

• Given vk3 ← PrepLabels(pp, {vkid}id∈P , (�1 , . . . , �ℓ )) and 3 5 ← PrepFunc(pp, 5 ), the run-
ning time ofEffVer(vk3 , 3 5 , y, � 5 ,H) is bounded by BMKHS(�, ℓ , ℓH , | 5 |)·ℓH = poly(�, log ℓ , ℓH , >(| 5 |)).

Finally, we note that previous work on (single-key) homomorphic signatures [CFW14,
GVW15] used a different preprocessing approach based on assuming that labels have
a structure � = (Δ, tg) consisting of a dataset identifier Δ (e.g., a filename) and a tag.2

Then they allow preprocessing the circuit along with tags in order to reuse it to verify
computations on different datasets. In comparison, our preprocessing notion is more
flexible and, by allowing arbitrary labels, implies the one from previous work.

7.3.3 Context Hiding

Informally speaking, a MKHS is context-hiding if signatures on outputs do not reveal
information on the inputs of the function. In our work, we adapt to the multi-key setting
the context-hiding definition for HS of [CFN15, full version], which in turn generalizes the
one in [GVW15].

Definition 7.9 (Context-Hiding MKHS). A MKHS supports context-hiding if there exist addi-
tional PPT procedures �̃← Hide(P , {vkid}id∈P , H, �) and HVer(P , {vkid}id∈P , H, �) such that:

• Correctness: For any tuple (P , {vkid}id∈P , H, �) such that {vkid}id∈P are honestly generated and
Ver(P , {vkid}id∈P , H, �) = 1, we have that HVer(P , {vkid}id∈P , H,Hide(P , {vkid}id∈P , H, �)) =
1.

• Unforgeability: The signature scheme is secure when we replace the original verification algorihtm
Ver with HVer in the security game.

• Context-Hiding: There is a simulator Sim = (SimSetup , SimSig) such that for any PPT (stateful)
distinguisherD running in the experiments {CtxtHiding1}1=0,1 defined in Figure 7.3, it holds���Pr[CtxtHiding0

D ,MKHS(�) = 1] − Pr[CtxtHiding1
D ,MKHS(�) = 1]

��� ≤ negl(�)

Generic Context-Hiding solution via NIZKs. We state a simple result showing that any
MKHS with amortized verification can be compiled, via the use of a NIZK scheme, into
one that has context-hiding.

Theorem 7.10. Let MKHS be a MKHS scheme with amortized efficiency, and letΠ be a knowledge-
sound NIZK for the NP relation 'MKHS = {((vk3 , 3 5 , H); � 5 ,H) : EffVer(vk3 , 3 5 , H, � 5 ,H) = 1}.
Then there exists a context-hiding MKHS scheme MKHS∗ for the same class of functions supported
by MKHS.
2 Though not formalized, this is the same notion used in the MKHS scheme of [FMNP16].
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CtxtHiding0
D ,MKHS(�)

pp← Setup(1� ,ℱ , ℐ D , T )
( 5 , (P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ]) ← D(pp)
1 ← ∧8∈[ℓ ]Ver(P8 , {vkid}id∈P8 , <8 , �8)
H ← 5 (<1 , . . . , <ℓ )
P ← 5 (P1 , . . . ,Pℓ )
�← Eval( 5 , (P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ])
�̃← Hide(P , {vkid}id∈P , H, �))
1′←D(�̃)
return 1 ∧ 1′

CtxtHiding1
D(�)

(pp, td) ← SimSetup(1� ,ℱ , ℐ D , T )
( 5 , (P8 , {vkid}id∈P8 , <8 , �8)8∈[ℓ ]) ← D(pp)
1 ← ∧8∈[ℓ ]Ver(P8 , {vkid}id∈P8 , <8 , �8)
H ← 5 (<1 , . . . , <ℓ )
P ← 5 (P1 , . . . ,Pℓ )

�̃← SimSig(td,P , {vkid}id∈P , H))
1′←D(�̃)
return 1 ∧ 1′

Figure 7.3: Security experiments {CtxtHiding1}1=0,1 for context-hiding.

The proof is rather straightforward and based on the idea of using the NIZK to prove
the existence of a valid signature. The amortized efficiency requirement ensures that the
scheme remains succinct even if the NIZK is not succinct. A proof sketch is given below.

Sketch. The algorithms of MKHS∗ are the same as those of MKHS except that MKHS∗.Setup
runs MKHS.Setup and additionally generates a common reference string for Π. Then the
algorithm Hide runs Π’s prover on a valid ((vk3 , 3 5 , H); � 5 ,H) ∈ 'MKHS and sets �̃ as the
resulting NIZK proof. In turn, HVer executesΠ’s verifier on (vk3 , 3 5 , H) and �̃. Correctness
is straightforward. The succinctness of MKHS∗ is based on the succinctness of MKHS and
the fact that EffVer running time is poly(�, log ℓ , log | 5 |); therefore, even if the size of the
NIZK proof depended on the size of the statement, it would be still succinct. For the
unforgeability of MKHS∗ we rely on the fact that Π is an argument of knowledge, which
allows us to use its extractor to get a MKHS signature � from the NIZK proof �̃ so that
from a forgery for MKHS∗ we can get one for MKHS. Finally, the context-hiding property
follows by the zero-knowledge property of Π. �

7.4 Our MKHS Construction

In this section we present our main result, that is the construction of a fully succinct MKHS.
Our scheme MKHS relies on four building blocks: a functional commitment FC, a

digital signature schemeΣ, a somewhere extractable BARG forNP BARG, and a somewhere
extractable commitment SEC. MKHS allows the evaluation of the same functions supported
by FC, and it supports arbitrary identities and tags, i.e., T = ℐ D = {0, 1}�. We denote
messages by <8 and labels by �8 and assume that |<8| = poly(�) for a fixed polynomial.

As described in the technical overview, the main idea of our construction is to combine
a BARG proof to attest the validity of each signature-message pair, and a FC proof to
show the correct evaluation of 5 on <1 , . . . , <ℓ , which are committed in com. Moreover,
to connect both proofs, our construction verifies the correctness of com inside the BARG
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circuit C , by starting with an empty commitment, and iteratively building a commitment
to <1 , . . . , <ℓ . We remark that the FC scheme must be updatable, and also deterministic,
such that we can test commitment equality.

We describe the construction in Figure 7.4 and summarize its main properties in
Theorem 7.11. For ease of exposition, in this scheme we focus on single-hop evaluation
and do not consider context-hiding. We show in Section 7.5.1 how to achieve multi-hop
sequential composition by employing chainable FCs instead of FCs. Also, we recall that
context-hiding can be achieved via NIZKs following Theorem 7.10.

Theorem 7.11. Let FC be a deterministic and updatable functional commitment scheme for a class
of functions ℱ : ℳℓ → ℳℓH , BARG a somewhere-extractable batch argument for NP, SEC a
somewhere extractable commitment, and Σ a EUF-CMA-secure signature scheme for messages
inℳ× {0, 1}2�. Then, the construction MKHS in Figure 7.4 is an adaptively-secure multi-key
homomorphic signature for ℱ .

Moreover, given that the following conditions are satisfied:

• BARG has proofs of size bounded by BBARG(�, |C|, :).

• FC has succinct commitments and BFC(�, ℓ , ℓH ,
�� 5 ��)-succinct opening proofs, and admits succinct

local verification where VerUpd runs in time bounded by BFC(�, ℓ , 1, 1) for an update set of size
|(| = 1.

• SEC admits local verification with BSEC(�, ℓ , �) succinctness.

Then, MKHS has succinct signatures of size
��� 5 ,H �� = BMKHS(�, ℓ , ℓH , | 5 |), where, for |C| =

BFC(�, ℓ , 1,�) + BSEC(�, ℓ ,�), we have (up to constant factors),

BMKHS(�, ℓ , ℓH , | 5 |) = BBARG(�, |C|, ℓ ) + BFC(�, ℓ , ℓH ,
�� 5 ��) + BSEC(�, ℓ ,�).

Proof. Authentication correctness follows directly by the correctness of Σ. Evaluation
correctness follows from the correctness of all the building blocks.

For succinctness, observe that the four additive factors in the expression for
��� 5 ,H ��

correspond to the sizes of �� ,� 5 , com, comF , respectively. To calculate the expression for
BMKHS(�, ℓ , ℓH , | 5 |), note that the block size of the SEC is � = poly(�, log ℓ ). Then, note that
all keys, commitments, and openings involved in C are of size BFC(�, ℓ , 1,�) + BSEC(�, ℓ ,�),
as well as the running time of the FC.VerUpd, SEC.Ver and Σ.Ver algorithms. Hence,
|C| = BFC(�, ℓ , 1,�) + BSEC(�, ℓ ,�).

We prove security in Section 7.4.2. �

Remark 7.12. For usual asymptotic succinctness boundswhere BBARG(�, |C|, :) = poly(�, |C|, log :),
BFC(�, ℓ , ℓH ,

�� 5 ��) = poly(�, log ℓ , log ℓH , >(
�� 5 ��)), and BSEC(�, ℓ , �) = poly(�, log ℓ , �), we have that

BMKHS(�, ℓ , ℓH , | 5 |) = poly(�, log ℓ , log ℓH , >(| 5 |)).

7.4.1 Efficient Verification

If FC has amortized efficient verification, then it is possible to preprocess the function
5 . Similarly, if BARG has amortized efficient verification, it is possible to preprocess the

166



7.4. Our MKHS Construction

MKHS.Setup(1� , 1ℓ ,ℱ ) :

• Calculate the required circuit size |C| given ℓ ,ℱ ,�.
• Calculate the required block size � from �. Note that � = poly(�).
• crs← BARG.Setup(1� , ℓ , 1|C|).
• dk← SEC.Setup(1� , ℓ , �)
• ck← FC.Setup(1� , 1ℓ ).
• Output pp← (crs, dk, ck).

MKHS.KeyGen(1�) : Output (vk, sk) ← Σ.KeyGen(1�).

MKHS.Sign(sk, �, <) : Output �← Σ.Sign(sk, <|�).

MKHS.Eval(pp, 5 , (�8 , vk8 , <8 , �8)8∈[ℓ ]) :

• Parse pp := (crs, ck, dk).
• (com, aux) ← FC.Com(ck, <1 , . . . , <ℓ ).
• � 5 ← FC.FuncProve(ck, 5 , aux).
• (com0 , aux0) ← FC.Com(ck, 0).
• For 8 ∈ [ℓ ], compute (com8 , aux8 ,�8) ← FC.Upd(ck, aux8−1 , 8 , <8).

Note that each com8 is a commitment to the partial vector (<1 , . . . , <8 , 0, . . . , 0). Note
also that comℓ = com.

• Compute a somewhere extractable commitment to all partial commitments
(comF , auxF) ← SEC.Com(dk, (com1 , . . . , comℓ )).

• For 8 ∈ [ℓ ], compute local openings >8 ← SEC.Open(dk, auxF , 8) to each com8 .

• Compute a BARG proof �� ← BARG.Prove(crs,C , {x8 , w8}8) for circuit C(x8 , w8) as
described in Figure 7.5.

• Output � 5 ,H = (com,� 5 ,�� , comF).

MKHS.Ver(pp,P , {vkid}id∈P , y, � 5 ,H) :

• Parse P := ( 5 , �1 , . . . , �ℓ ) and {�8 := (id8 , �8)}.
• If P = ( 583 , �1) then check that Σ.Ver(vkid1 , y|�1 , � 5 ,H) = 1.

• Else, parse � 5 ,H := (com,� 5 ,�� , comF).
• Let com0 ← FC.Com(ck, 0)
• Compute the circuit C in Figure 7.5, hardcoding com, comF , com0.

• Given {vk8}8 := {vkid8}8 and {�8}8 , {ck8}8 , {dk8}8 , define x8 = (vk8 , ck8 , dk8 , dk8−1 , �8 , 8).
• Output 1 iff FC.FuncVer(ck, com, 5 , y,� 5 ) = 1 and BARG.Ver(crs,C , {x8}8 ,��) = 1.

Figure 7.4: Construction of a multi-key homomorphic signature scheme MKHS from a functional commit-
ment FC, a BARG for NP BARG, a somewhere extractable commitment SEC and a digital signature Σ.
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Description of C(x, w) :
Hardwired: com, comF , com0

Statement: x = (vk8 , ck8 , dk8 , dk8−1 , �8 , 8)
Witness: w = (<8 , �8 ,�8 , com8−1 , com8 , >8−1 , >8)
Circuit:

• If 8 = 1, check that com8−1 = com0 and skip the SEC verification check
for 8 − 1.

• If 8 = ℓ , check that com8 = com

• Check that:

Σ.Ver(vk8 , <8|�8 , �8) = 1

∧ FC.VerUpd(ck8 , 8 , com8−1 , 0, com8 , <8 ,�8) = 1

∧ SEC.Ver(dk8 , comF , 8 , >8 , com8) = 1

∧ SEC.Ver(dk8−1 , comF , 8 − 1, >8−1 , com8−1) = 1

Figure 7.5: Description of the BARG circuit C .

labels �8 and the respective verification keys. We describe the corresponding preprocess-
ing algorithms MKHS.PrepFunc and MKHS.PrepLabels, as well as the efficient verification
algorithm MKHS.EffVer, in Figure 7.6.

We summarize the efficient verification properties in the following corollary of Theorem
7.11. The proof follows from the definitions of efficient verification for BARGs (Definition
6.5) and for FCs (Definition 4.5).

Corollary 7.13. If BARG and FC admit efficient verification, the MKHS scheme from Figure
7.4 with the algorithms in Figure 7.6 also satisfies efficient verification, i.e., the running time of
MKHS.EffVer(vk� , ck 5 , y, � 5 ,H) is bounded by BMKHS(�, ℓ , ℓH , | 5 |) · ℓH .

We note that the efficient verification property of our scheme is flexible, in the sense
that we introduce separate algorithms for preprocessing the function PrepFunc and for the
labels PrepLabels. Therefore, if the BARG satisfies efficient verification but the FC does not
(or vice-versa), our MKHS admits pre-processing only the labels (or the function).

7.4.2 Proof of Security

LetA be an adversary in the security experiment HomUF-CMAA,MKHS(1�) for our MKHS
construction. In this game, the adversary has access to a signing oracle OSign such that,
for � = (id, tg), then OSign(�, <) outputs �� ← Σ.Sign(skid , <|�). It also has access to a
key generation OKeyGen and a corruption OCorr oracle. Finally, A produces an alleged
forgery (P ∗ , y∗ , �∗) where P ∗ = ( 5 ∗ , �∗1 , . . . , �∗ℓ ). We recall that there are two possible types
of forgeries, that we define formally as the following events.
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MKHS.PrepFunc(pp, 5 ) :

• Parse pp := (crs, ck, dk).
• Output ck 5 ← FC.PreFuncVer(ck, 5 ).

MKHS.PrepLabels(pp, (vk8 , �8)8∈[ℓ ]) :

• Parse pp := (crs, ck, dk).
• Given {vk8}8 , {�8}8 , {ck}8 , {dk}8 , define x8 = (vk8 , �8 , ck8 , dk8).
• Output vk� ← BARG.PreVer(crs, {x8}8).

MKHS.EffVer(vk� , ck 5 , y, � 5 ,H) :

• Parse � 5 ,H := (com,� 5 ,�� , comF).
• Let com0 ← FC.Com(ck, 0)
• Check that FC.EffFuncVer(ck, com, ck 5 , y,� 5 ) = 1

• Compute the BARG circuit C , hardcoding com, comF , com0.

• Check that BARG.EffVer(crs,C , vk� ,��) = 1

• Output 1 iff both checks pass.

Figure 7.6: Efficient verification algorithms for our construction of a multi-key homomorphic signature
scheme MKHS.

• TYPE1 := ∃9 ∈ [ℓ ], (�∗
9
, ·) ∉ LSig. Namely, there exists some index 9 such thatA never

queried (�∗
9
, ·) to the signing oracle.

• TYPE2 := ∀8 ∈ [ℓ ], (�∗
8
, <8) ∈ LSig ∧ y∗ ≠ 5 ∗(<1 , . . . , <ℓ ). Namely,A asked all queries

(�∗
8
, <8) to the signing oracle, but cheated at computing y∗.

For both types of forgeries we can partition on whether the forgery is a fresh signature
(i.e.,P = ℐ�) or an evaluated one. In the event of type 2 forgeries, for our schemewe can also
partition over the event ‘com∗ = FC.Com(ck, <1 , . . . , <ℓ )’, where com∗ is the (deterministic)
commitment included in �∗.

Let also VER be the event that verification passes and that no user involved in a labeled
program is corrupted, i.e.,

VER := MKHS.Ver(pp,P ∗ , {vkid}id∈P ∗ , y∗ , �∗) = 1 ∧ {id ∈ P ∗} ∩ LCorr = ∅.

We define 4 experiments, UF1, UF2, UF3, and UF4:

• UF1 outputs 1 iff VER ∧ P ≠ ℐ� ∧ TYPE1.

• UF2 outputs 1 iff VER ∧ P ≠ ℐ� ∧ TYPE2 ∧ (com∗ = FC.Com(ck, <1 , . . . , <ℓ )).

• UF3 outputs 1 iff VER ∧ P ≠ ℐ� ∧ TYPE2 ∧ (com∗ ≠ FC.Com(ck, <1 , . . . , <ℓ )).

• UF4 outputs 1 iff VER ∧ P = ℐ� ∧ (TYPE1 ∨ TYPE2).
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Overall, we partitioned the probability space so that, by the union bound, for any
PPT adversaryA we have that Pr[HomUF-CMAA,MKHS(�) = 1] ≤ ∑4

:=1 Pr[UF:,A(�) = 1].
We separate the proof in lemmas that bound the probability thatA wins in each of the
experiments.

Lemma 7.14. For any PPT adversaryA making at most& = poly(�) queries to the key generation
oracle and that can produce a valid forgery inUF1, there exist PPT adversariesℬB8=3 ,ℬB�GC ,ℬEUF-CMA

against the BARG setup indistinguishability, somewhere extractability and the EUF-CMA property
of the digital signature scheme Σ, such that:

Pr[UF1,A(�) = 1] ≤

ℓ ·
(
Advsind

BARG,ℬB8=3 (�) + Advsext
BARG,ℬB�GC (�) +& · Adveuf-cma

Σ,ℬEUF-CMA
(�)

)
.

Proof. We first define WIN1 as the winning event of UF1:

WIN1 :=

{
∃9 ∈ [ℓ ] : (�∗

9
= (id∗9 , tg∗9), ·) ∉ LSig ∧ id∗9 ∉ LCorr

∧ BARG.Ver(crs,C , {x∗
8
}8 ,�∗�) = 1

.

Notice that WIN1 is implied by VER ∧ TYPE1, and that we have suppressed unnecesary
checks that will not be used in the proof of this lemma. Based on this winning condition,
we define a series of hybrid games Hyb0 ,Hyb1 ,Hyb2 ,Hyb3 described in Figure 7.7.

Hyb0: As described above, this game is a simplified version of UF1 where we omit unnec-
essary outputs from the adversary and from the winning condition.

Hyb1: To transition from Hyb0 to Hyb1, since the choice of 9∗ is uniform over [ℓ ], we have
that 9 = 9∗ with probability 1

ℓ . As a result we have that:

Pr[Hyb1
A(�) = 1] ≥ 1

ℓ
Pr[Hyb0

A(�) = 1].

Hyb2: In this game, the only difference with Hyb1 is that the BARG setup is set in trapdoor
mode at position 9∗. Then, we have that ifA interpolates between Hyb1 and Hyb2, we can
construct an adversary ℬB8=3 against BARG setup indistinguishability property such that

Pr[Hyb2
A(�) = 1] ≤ Pr[Hyb1

A(�) = 1] + Advsind
BARG,ℬB8=3 (�).

Hyb3: IfA outputs 1 against Hyb2 but outputs 0 against Hyb3, it must be the case that:

• BARG.Ver(crs,C , {x8}8 ,��∗) = 1,

• C(x9∗ , w̄9∗) ≠ 1 where w̄9∗ is obtained from BARG.Ext(td,C ,�∗�).

Then, we can useA to construct an adversaryℬB�GC against BARG somewhere extractabil-
ity such that:

Pr[Hyb3
A(�) = 1] ≤ Pr[Hyb2

A(�) = 1] + Advsext
BARG,ℬB�GC (�).
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Hyb0
A(�):

crs← BARG.Setup()
dk← SEC.Setup()
ck← FC.Setup()
(P ∗ ,�∗� , {x∗8}8) ← AO(crs, dk, ck)
Output 1 iff:

WIN1 = 1

Hyb1
A(�):

9∗ ←$ [ℓ ]
crs← BARG.Setup()
dk← SEC.Setup()
ck← FC.Setup()
(P ∗ ,�∗� , {x∗8}8) ← AO(crs, dk, ck)
Output 1 iff:

WIN1 = 1
∧(9∗ = 9)

Hyb2
A(�):

9∗ ←$ [ℓ ]
(crs, td) ← BARG.TdSetup(9∗)
dk← SEC.Setup()
ck← FC.Setup()
(P ∗ ,�∗� , {x∗8}8) ← AO(crs, dk, ck)
Output 1 iff:

WIN1 = 1
∧ (9∗ = 9)

Hyb3
A(�):

9∗ ←$ [ℓ ]
(crs, td) ← BARG.TdSetup(9∗)
dk← SEC.Setup()
ck← FC.Setup()
w̄9∗ ← BARG.Ext(td,C ,�∗�)
(P ∗ ,�∗� , {x∗8}8) ← AO(crs, dk, ck)
Output 1 iff:

WIN1 = 1
∧ (9∗ = 9)
∧ C(x∗

9∗ , w̄9∗) = 1

Figure 7.7: Games Hyb0 ,Hyb1 ,Hyb2 ,Hyb3 for the proof of Lemma 7.14. We highlight changes between
games and omit inputs to Setup for succinctness.

Finally, we proceed to bound the advantage of A in Hyb3. Recall that A can make
at most & = poly(�) queries to the key generation oracle OKeyGen. We useA to build an
algorithm ℬEUF-CMA that breaks the existential unforgeability of Σ. ℬEUF-CMA simulates
the game Hyb3 toA, proceeding as follows:

1. ℬEUF-CMA receives the verification key vk∗ from the EUF-CMA challenger.

2. ℬEUF-CMA starts by uniformly sampling 9∗ ←$ [ℓ ] and @∗ ←$ [&]. It initializes empty lists
LID , LSig ← ∅. Then ℬEUF-CMA runs the setup algorithm for BARG, FC,MKHS, setting
(crs, td) ← BARG.TdSetup(9∗). It then sends the public parameters pp toA.

3. WheneverA makes a query to OKeyGen(id):

• If the query is the @∗-th query, let vkid = vk∗ and return vkid toA.

• Otherwise, let (vkid , skid) ← Σ.KeyGen(1�).

4. WheneverA makes a query to OSign(<, � = (id, tg)):

• If (�, <) ∉ LSig:
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– If id = id@∗ : forward the query to the EUF-CMA oracle � ← OSign(<|�), update
LSig := LSig ∪ (�, <) and then send � toA.

– Otherwise, if id ≠ id@∗ : compute �� ← Sign(skid , �, <), update LSig := LSig ∪ (�, <),
and return �� toA.

• Else, if (�, <) ∈ LSig, ignore the query.

5. WheneverA makes a query to OCorr(id):

• if id = id@∗ , abort

• else, if id ∈ LID and id ∉ LCorr, update LCorr ← LCorr ∪ id, and return skid.

6. At the end of the gameA outputs (P ∗ , H∗ , �∗). ℬEUF-CMA checks that BARG.Ver(crs,C ,
{x∗

8
}8 ,�∗�) = 1 and that (�∗

9∗ = (id
∗
9∗ , tg

∗
9∗), ·) ∉ LSig and id∗9∗ ∉ LCorr. Additionally, it checks

that id∗9∗ = id@∗ .

If any of these checks does not pass, ℬEUF-CMA aborts. Otherwise it computes w̄9∗ ←
BARG.Ext(td,C , {x∗

8
}8∈[ℓ ] ,�∗�) and parses �̄9∗ and <̄ 9∗ from w̄9∗ . At the end ℬEUF-CMA

outputs (<̄ 9∗ |�∗9∗ , �̄9∗) as its forgery.

By construction, conditioned on id∗9∗ = id@∗ , algorithm ℬEUF-CMA perfectly simulates an
execution of Hyb3 to A. Note that, overall, the probability of not aborting during the
simulation is at least 1/&, since the winning condition guarantees that there exists at least
one identity that remains uncorrupted. If all guesses are correct, as C is explicitly checking
Σ.Ver(vk∗ , <̄ 9∗ |�∗9∗ , �̄9∗) = 1, it means that �̄9∗ is a valid signature on <̄ 9∗ |�∗9∗ .

Thuswith probability at least 1
& ·Pr[Hyb3

A(�) = 1],ℬEUF-CMA outputs a valid EUF-CMA
forgery. In summary,

Pr[Hyb3
A(1�) = 1] ≤ & · Adveuf-cma

Σ,ℬEUF-CMA
(�).

�

Lemma 7.15. For any PPT adversaryA that can produce a valid forgery against UF2, there exists
a PPT adversary ℬ against evaluation binding of the functional commitment scheme FC such that

Pr[UF2,A(�) = 1] ≤ Advevbind
FC,ℬ (�).

Proof. As in the proof of Lemma 7.14, we first define awining event WIN2 as a simplification
of the winning condition of UF2 which only includes the checks that are relevant for the
reduction.

WIN2 :=


∀8 ∈ [ℓ ], (�∗

8
, <8) ∈ LSig

∧ y∗ ≠ 5 ∗(<1 , . . . , <ℓ )
∧ com∗ = FC.Com(ck, (<1 , . . . , <ℓ ))
∧ FC.FuncVer(ck, com∗ , y∗ , 5 ∗ ,�∗

5 ∗) = 1

.

We describe how to build an efficient algorithm ℬ that breaks the evaluation binding
of FC.
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1. ℬ receives a commitment key ck by the challenger of the evaluation binding game.

2. ℬ initialize empty lists LID , LSig ← ∅. Then ℬ runs crs ← BARG.Setup(1� , ℓ , 1|C|) and
dk← SEC.Setup(1� , ℓ , �) and sends pp← (crs, dk, ck) toA.

3. ℬ simulates all ofA’s queries to OKeyGen ,OSign ,OCorr by using knowledge of the secret
keys, and updates the list LSig every time a fresh OSign(�∗ , <) query is made byA.

4. At the end of the simulation,A outputs (P ∗ , com∗ ,�∗
5 ∗) (we ignore the remaining outputs).

ℬ parses ( 5 ∗ , (�∗1 , . . . , �∗ℓ )) from P ∗, and retrieves the messages <1 , . . . , <ℓ associated to
labels �∗1 , . . . , �

∗
ℓ
from LSig.

5. Finally, ℬ computes the honest output y = 5 ∗(<1 , . . . , <ℓ ), and an honest FC opening
proof toy as� 5 ∗ ← FC.FuncProve(ck, (<1 , . . . , <ℓ ), 5 ∗). Then,ℬ outputs (com∗ , 5 ∗ , y,� 5 ∗ ,

y∗ ,�∗
5 ∗).

By construction, ℬ perfectly simulates an execution of the MKHS game forA. Also, note
that if A is a successful adversary against UF2, then by the WIN2 event, the messages
<1 , . . . , <ℓ retrieved from LSig must be the same ones that are committed under com∗. As
com∗ and y are honest, we have that FC.FuncVer(ck, com∗ , y, 5 ∗ ,� 5 ∗) = 1.

Thus, ℬ’s output is a valid output in the FC evaluation binding game. To summarize,

Pr[UF2,A(�) = 1] ≤ Advevbind
FC,ℬ (�).

�

Lemma 7.16. For any PPT adversaryA that wins in the UF3 game, there exists a tuple of PPT
adversaries (ℬ1 , . . . ,ℬ6) such that

Pr[UF3A(�) = 1] ≤ ℓ ·
[
Advsind

BARG,ℬ1
(�) + Advsext

BARG,ℬ2
(�) + 2 · Advsind

SEC,ℬ3
(�)

+ Advsext
SEC,ℬ4

(�) +& · Adveufcma
Σ,ℬ5

(�) + Advupdbind
FC,ℬ6

(�)
]
.

Proof. ForA to win in event UF3, it must have crafted a type 2 forgery y∗ ≠ 5 ∗(<1 , . . . , <ℓ )
such that ∀8 ∈ [ℓ ], (�∗

8
, <8) ∈ LSig, and such that {id ∈ P ∗} ∩ LCorr = ∅. Besides, the commit-

ment com∗ to themessagesmust not be honestly computed, com∗ ≠ FC.Com(ck,m). Wewill
prove the lemma through a long sequence of hybrid sub-games Hyb1,0 , . . . ,Hybℓ ,8 ,Hybℓ ,8∗.

First of all, we describe the following winning event:

WIN3 :=


∀8 ∈ [ℓ ], (�∗

8
, <8) ∈ LSig

∧ {id ∈ P ∗} ∩ LCorr = ∅
∧ BARG.Ver(crs,C , {x8}8 ,��) = 1
∧ com∗ ≠ FC.Com(ck,m)

.

As in previous lemmas, note that WIN3 only includes a subset of the checks in MKHS.Ver,
as the other conditions (in particular, FC verification) are not relevant for this lemma. Based
on this winning condition, we introduce an initial Hyb1,0 in Figure 7.8 as a simplification
of UF3 where we omit the outputs � 5 , y

∗ from the adversary. As the winning condition in
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Hyb1,0 is less strict than in UF3 while the pre-conditions remain the same, any adversary
winning in UF3 also wins in Hyb1,0. Hence, Pr[UF3A(�) = 1] ≤ Pr[Hyb1,0

A (�) = 1].

Games Hyb1,j : We formally introduce the hybrid games in Figures 7.8, 7.9, 7.10, and 7.11.
We progress through the hybrids below.

Hyb1,0
A (�):

crs← BARG.Setup()
dk← SEC.Setup()
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
Output 1 iff WIN3 = 1

Hyb1,1
A (�):

(crs, td) ← BARG.TdSetup(1)
dk← SEC.Setup()
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
Output 1 iff WIN3 = 1

Figure 7.8: Games Hyb1,0 ,Hyb1,1 for the proof of Lemma 7.16. We highlight changes between games and
omit inputs to Setup for succinctness.

Hyb1,2
A (�):

(crs, td) ← BARG.TdSetup(1)
dk← SEC.Setup()
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄1 ← BARG.Ext(td,C ,��)
Output 1 iff:

WIN3 = 1

∧ C(x1 , w̄1) = 1

Hyb1,3
A (�):

(crs, td) ← BARG.TdSetup(1)
(dk, td2) ← SEC.TdSetup(1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄1 ← BARG.Ext(td,C ,��)
Output 1 iff:

WIN3 = 1

∧ C(x1 , w̄1) = 1

Figure 7.9: Games Hyb1,2 ,Hyb1,3 for the proof of Lemma 7.16.

Hyb1,1: The transition from Hyb1,0 to Hyb1,1, where we switch BARG.Setup to trapdoor
mode BARG.TdSetup(1) at index 1, follows easily by the setup indistinguishability prop-
erty of BARG. We have that there exists a PPT adversary ℬ1 against BARG setup indistin-
guishability such that

Pr[Hyb1,0
A (�) = 1] ≤ Pr[Hyb1,1

A (�) = 1] + Advsind
BARG,ℬ1

(�).

Hyb1,2: In this step, we additionally extract from BARG at position 1 and abort ifC(x1 , w̄1) ≠
1 for the extractedwitness w̄1. Thewitness is given by w̄1 = (<̄1 , �̄1 , �̄1 , ¯com0 , ¯com1 , >̄0 , >̄1),
where ¯com0 and >̄0 are irrelevant for the proof. It follows that there exists a PPT adversary
ℬ2 against BARG somewhere extractability such that

Pr[Hyb1,1
A (�) = 1] ≤ Pr[Hyb1,2

A (�) = 1] + Advsext
BARG,ℬ2

(�).
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Hyb1,3: In this game, we set SEC.Setup extractable at index 1. We have that there exists an
adversary ℬ4 against SEC setup indistinguishability such that

Pr[Hyb1,2
A (�) = 1] ≤ Pr[Hyb1,3

A (�) = 1] + Advsind
SEC(�).

Hyb1,4
A (�):

(crs, td) ← BARG.TdSetup(1)
(dk, td2) ← SEC.TdSetup(1)
ck← FC.Setup()
(P∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO (crs, dk, ck)
w̄1 ← BARG.Ext(td,C ,��)
ˆcom1 ← SEC.Ext(td2 , comF)

Output 1 iff:

WIN3 = 1

∧ C(x1 , w̄1) = 1

∧ ˆcom1 = ¯com1

Hyb1,5
A (�):

(crs, td) ← BARG.TdSetup(1)
(dk, td2) ← SEC.TdSetup(1)
ck← FC.Setup()
(P∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO (crs, dk, ck)
w̄1 ← BARG.Ext(td,C ,��)
ˆcom1 ← SEC.Ext(td2 , comF)

Output 1 iff:

WIN3 = 1

∧ C(x1 , w̄1) = 1

∧ ˆcom1 = ¯com1

∧ <̄1 = <1

Figure 7.10: Games Hyb1,4 ,Hyb1,5 for the proof of Lemma 7.16.

Hyb1,4: In this game, we extract ˆcom1 ← SEC.Ext(td2 , comF) and abort if ˆcom1 ≠ ¯com1.
To prove the transition from the previous game, note that, by definition, C(x1 , w̄1) = 1
implies that SEC.Ver(dk1 , comF , 1, ¯com1 , >̄1) = 1. Hence, if SEC.Ext(td2 , comF , 8

∗) ≠ ¯com8∗ ,
then we can create an adversary ℬ3 against SEC somewhere extractability. We have that

Pr[Hyb1,3
A (�) = 1] ≤ Pr[Hyb1,4

A (�) = 1] + Advsext
SEC,ℬ3

(�).

Hyb1,5: In this game, we add the requirement that the extracted <̄1 ∈ w̄1 equals the honest
<1, where <1 is the message that A queries to the OSign oracle on label �∗1 ∈ P ∗. By
definition of C , we have that C(x1 , w̄1) = 1 and therefore Σ.Ver(vk1 , <̄1|�∗1 , �̄1) = 1. If
<1 ≠ <̄1, thenA must have produced a signature forgery (<̄1|�∗1 , �̄1) for key vk1.

In a more careful analysis, we bound the probability of this event by constructing an
adversary ℬ5 against the unforgeability of the signature scheme Σ. ℬ5 runs on input a
verification key vk∗ from the EUF-CMA challenger; it chooses a random index @∗ ←$ [&],
where & = poly(�) is the number of queries thatA can make to the OKeyGen oracle, and
then it adaptively simulates all OKeyGen, OSign and OCorr queries forA as follows:

• For the 8-th query toOKeyGen(id), if 8 = @∗, return vkid = vk∗, otherwise generate a keypair
(vkid , skid) ← Σ.KeyGen(1�) and return vkid.

• All OSign((id, ·), ·) queries such that id = id@∗ are answered using the OSign(·) oracle of
the EUF-CMA challenger, where all the remaining queries are answered by using the
secret key skid, which is known to ℬ5.
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• IfA makes a query OCorr(id) such that id = id@∗ abort, otherwise return the correspond-
ing secret key skid.

AfterA outputs (P ∗ , {x∗
8
}8 , com∗ ,�� , comF), ℬ5 parses the labels �∗1 = (id∗1 , ·) in P ∗ and

aborts if id∗1 ≠ id@∗ .

If ℬ5 does not abort, then the simulation is perfect and it must be that (<̄1|�∗1 , �̄1) is a
valid forgery for the EUF-CMA game. This holds as the WIN3 condition enforces that
A is only allowed to output labels �∗

8
such that (�∗

8
, <8)was queried to OSign. Moreover,

WIN3 also enforces that vk1 is not a corrupted key. Namely, id∗1 is one of the non-corrupted
keys and thus the probability that ℬ5 does not abort is 1/&. Thus, we conclude:

Pr[Hyb1,4
A (�) = 1] ≤ Pr[Hyb1,5

A (�) = 1] +& · Adveufcma
Σ,ℬ5

(�).

Hyb1,6
A (�):

(crs, td) ← BARG.TdSetup(1)
(dk, td2) ← SEC.TdSetup(1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄1 ← BARG.Ext(td,C ,��)
ˆcom1 ← SEC.Ext(td2 , comF)

com1 ← FC.Com(ck, (<1 , 0))
Output 1 iff:

WIN3 = 1

∧ C(x1 , w̄1) = 1

∧ ˆcom1 = ¯com1 = com1

∧ <̄1 = <1

Hyb1,7
A (�):

(crs, td) ← BARG.TdSetup(1)
(dk, td2) ← SEC.TdSetup(1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄1 ← BARG.Ext(td,C ,��)
ˆcom1 ← SEC.Ext(td2 , comF)

com1 ← FC.Com(ck, (<1 , 0))
Output 1 iff:

WIN3 = 1

∧ ˆcom1 = com1

Figure 7.11: Games Hyb1,6 ,Hyb1,7 for the proof of Lemma 7.16.

Hyb1,6: In this game, we compute the honest partial commitment com1 ← FC.Com(ck,
(<1 , 0, . . . , 0)), and require that ¯com1 = com1, and by extension, that ˆcom1 = com1. This
step follows easily by the updatability property of FC, since C(x1 , w̄1) = 1 only holds if
FC.VerUpd(ck1 , 1, ¯com0 , 0, ¯com1 , <̄1 , �̄1) = 1. As <̄1 = <1, if ¯com1 ≠ com1 then we break
FC updatability soundness. Hence, there exists an adversary ℬ6 against FC updatability
such that

Pr[Hyb1,5
A (�) = 1] ≤ Pr[Hyb1,6

A (�) = 1] + Advupdbind
FC,ℬ6

(�).

Hyb1,7: This game is a simplification of Hyb1,6 where we no longer extract from BARG, and
hence we no longer have C(x1 , w̄1) = 1∧ <̄1 = <1∧ ˆcom1 = ¯com1 in the winning condition.
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We have that

Pr[Hyb1,6
A (�) = 1] = Pr[Hyb1,7

A (�) = 1 ∧ C(x1 , w̄1) = 1 ∧ <̄1 = <1 ∧ ˆcom1 = ¯com1]
≤ Pr[Hyb1,7

A (�) = 1].

Note, this simplification makes the winning condition of Hyb1,7 independent of BARG
extraction, which is crucial for changing the extraction index in the subsequent hybrid.

Games Hybi ,j for 2 ≤ i < ℓ: We introduce the hybrid games in Figures 7.12, 7.13, 7.14.
First of all, we analyze the step from Hyb1,7 to Hyb2,1. Then, we analyze the generic step
from Hyb8−1,9 to Hyb8 ,1 for 8 > 2, and proceed with the remaining hybrids.

Hyb8 ,1A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.Setup(8 − 1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
ˆcom8−1 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ ˆcom8−1 = com8−1

Hyb8 ,2A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.Setup(8 − 1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8−1 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1

∧ ˆcom8−1 = com8−1

Hyb8 ,3A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.Setup(8 − 1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8−1 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1

∧ ˆcom8−1 = ¯com8−1 = com8−1

Figure 7.12: Games Hyb8 ,1 ,Hyb8 ,2 ,Hyb8,3 for the proof of Lemma 7.16.

Hyb2,1: In the transition from Hyb1,7 to Hyb2,1, we simply switch BARG.TdSetup(1) to the
following index BARG.TdSetup(2). The step again follows by the setup indistinguishabil-
ity of BARG. We have that

Pr[Hyb1,7
A (�) = 1] ≤ Pr[Hyb2,1

A (�) = 1] + Advsind
BARG,ℬ1

(�).

Hyb8 ,1: In the transition from Hyb8−1,9 to Hyb8 ,1, we also simply switch BARG.TdSetup(8−1)
to the following index BARG.TdSetup(8). As above, the setup indistinguishability of BARG
implies that

Pr[Hyb8 ,1A (�) = 1] ≤ Pr[Hyb8−1,9
A (�) = 1] + Advsind

BARG,ℬ1
(�).

Hyb8 ,2, Hyb1,3: These steps are identical to the respective steps for Hyb1,2 ,Hyb1,3,

Pr[Hyb8 ,1A (�) = 1] ≤ Pr[Hyb8 ,3A (�) = 1] + Advsext
BARG,ℬ2

(�) + Advsind
SEC,ℬ3

(�).
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Hyb8 ,4A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.Setup(8 − 1)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8−1 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1
∧ ¯com8−1 = com8−1

Hyb8 ,5A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.TdSetup(8)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8−1 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1
∧ ¯com8−1 = com8−1

Hyb8 ,6A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.TdSetup(8)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1
∧ ¯com8−1 = com8−1

∧ ¯com8 = ˆcom8

Figure 7.13: Games Hyb8 ,4 ,Hyb8,5 ,Hyb8,6 for the proof of Lemma 7.16.

Hyb8 ,4: This game is a simplification of Hyb8 ,3 where we no longer extract from SEC, and
therefore, the winning condition com8−1 = ˆcom8−1 also vanishes. Similarly to the proof
for Hyb1,7, it follows that

Pr[Hyb8,3A (�) = 1] ≤ Pr[Hyb8 ,4A (�) = 1].

Hyb8 ,5 ,Hyb8 ,6: These steps are nearly identical to Hyb1,3 and Hyb1,4, where we switch the
extraction index of SEC (to index 8), and then use the corresponding SEC extractor. By
the setup indistinguishability and somewhere extractability of SEC, it follows that we
can construct adversaries ℬ3 and ℬ4 such that

Pr[Hyb8 ,4A (�) = 1] ≤ Pr[Hyb8 ,6A (�) = 1] + Advsind
SEC,ℬ3

(�) + Advsext
SEC,ℬ4

(�).

Hyb8 ,7: This game transition is as for Hyb1,5, where we rely on the unforgeability of Σ. The
only difference is that in the reduction we must replace vk1 by vk8 in the abort condition
defined in the guessing argument. In an analog manner, it follows that

Pr[Hyb8 ,6A (�) = 1] ≤ Pr[Hyb8,7A (�) = 1] +& · Adveufcma
Σ,ℬ5

(�).

Hyb8 ,8, Hyb8 ,9: These steps are identical to those forHyb1,6 andHyb1,7, respectively. We have
that, by FC updatability soundness, and by the simplification of the winning condition,
there exists an adversary ℬ6 such that

Pr[Hyb1,7
A (�) = 1] ≤ Pr[Hyb1,9

A (�) = 1] + Advupbind
FC,ℬ6

(�).
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Hyb8 ,7A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.TdSetup(8)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1
∧ ¯com8−1 = com8−1

∧ ¯com8 = ˆcom8

∧ <̄8 = <8

Hyb8 ,8A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.TdSetup(8)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8 ← SEC.Ext(td2 , comF)

com8−1 ←
FC.Com(ck, (m[1:8−1] , 0))

com8 ← FC.Com(ck, (m[1:8] , 0))
Output 1 iff:

WIN3 = 1

∧ C(x8 , w̄8) = 1
∧ ¯com8−1 = com8−1

∧ ¯com8 = ˆcom8 = com8

∧ <̄8 = <8

Hyb8 ,9A (�):
(crs, td) ← BARG.TdSetup(8)
(dk, td2) ← SEC.TdSetup(8)
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄8 ← BARG.Ext(td,C ,��)
ˆcom8 ← SEC.Ext(td2 , comF)

FC.Com(ck, (m[1:8−1] , 0))
com8 ← FC.Com(ck, (m[1:8] , 0))
Output 1 iff:

WIN3 = 1

∧ ˆcom8 = com8

Figure 7.14: Games Hyb8 ,7 ,Hyb8 ,8 ,Hyb8 ,9 for the proof of Lemma 7.16.

Games Hybℓ ,j : Games Hybℓ ,1 to Hybℓ ,8 are defined as the games Hyb8 ,1 to Hyb8,8, for 8 = ℓ , in
Figures 7.12, 7.13, 7.14, and the reduction steps are identical for these cases. To analyze the
advantage of the adversary in Hybℓ ,8, we introduce an additional Hybℓ ,8∗, that we compare
to the former in Figure 7.15.

Observe that Hybℓ ,8∗ is just a simplification of game Hybℓ ,8 with an easier winning
condition. Hence,

Pr[Hybℓ ,8A (�) = 1] ≤ Pr[Hybℓ ,8∗A (�) = 1]
Finally, note that the conditions WIN3, C(xℓ , w̄ℓ ) = 1, and ¯comℓ = comℓ cannot occur

simultaneously. The circuit C(xℓ , w̄ℓ ) = 1 (Figure 7.5) checks, for 8 = ℓ , that ¯comℓ = com∗.
Therefore, com∗ = comℓ is honestly computed, which contradicts the winning condition
WIN3. We conclude that

Pr[Hybℓ ,8∗A (�) = 1] = 0.

Proof summary. Putting all the intermediate bounds together, we obtain the following
final bound:

Pr[UF3A(�) = 1] ≤ ℓ · Advsind
BARG,ℬ1

(�) + ℓ · Advsext
BARG,ℬ2

(�)
+ (2= − 1) · Advsind

SEC,ℬ3
(�) + ℓ · Advsext

SEC,ℬ4
(�)

+ ℓ · & · Adveufcma
Σ,ℬ5

(�) + ℓ · Advupdbind
FC,ℬ6

(�).
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Hybℓ ,8A (�):
(crs, td) ← BARG.TdSetup(ℓ )
(dk, td2) ← SEC.TdSetup(ℓ )
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄ℓ ← BARG.Ext(td,C ,��)
ˆcomℓ ← SEC.Ext(td2 , comF)

comℓ−1 ← FC.Com(ck, (m[1:ℓ−1] , 0))
comℓ ← FC.Com(ck, (m[1:ℓ ] , 0))
Output 1 iff:

WIN3 = 1

∧ C(xℓ , w̄ℓ ) = 1
∧ ¯comℓ−1 = comℓ−1

∧ ¯comℓ = ˆcomℓ = comℓ

∧ <̄ℓ = <ℓ

Hybℓ ,8∗A (�):
(crs, td) ← BARG.TdSetup(ℓ )
(dk, td2) ← SEC.TdSetup(ℓ )
ck← FC.Setup()
(P ∗ , {x∗

8
}8 , com∗ ,�� , comF)

← AO(crs, dk, ck)
w̄ℓ ← BARG.Ext(td,C ,��)
ˆcomℓ ← SEC.Ext(td2 , comF)

comℓ−1 ← FC.Com(ck, (m[1:ℓ−1] , 0))
comℓ ← FC.Com(ck, (m[1:ℓ ] , 0))
Output 1 iff:

WIN3 = 1

∧ C(xℓ , w̄ℓ ) = 1
∧ ¯comℓ = comℓ

Figure 7.15: Games Hybℓ ,8 ,Hybℓ ,8∗ for the proof of Lemma 7.16.

�

Lemma 7.17. For any PPT adversaryA making at most& = poly(�) queries to the key generation
oracle and that can produce a valid forgery in UF4, there exists a PPT adversary ℬEUF-CMA against
the EUF-CMA property of the digital signature scheme Σ, such that

Pr[UF4,A(�) = 1] ≤ & · Adveuf-cma
Σ,ℬEUF-CMA

(�).

Proof. The proof of this lemma follows virtually the same reduction strategy to unforgeabil-
ity as in the previous lemmas (the proof of the last hybrid in Lemma 7.14 and the proofs for
hybrids Hyb1,4 ≈ Hyb1,5 in Lemma 7.16). Therefore we only give a sketch to highlight the
main differences. The reduction starts by making a guess (which is correct with probability
1/&) about the index of the key generation query that gives the verification key that will
be used in the forgery. If the guess is correct, a MKHS forgery (�∗ , H∗ , �∗) gives a signature
on the message H∗|�∗. If the MKHS forgery is of type 1, then the message is new since no
message with suffix �∗ was asked to the signing oracle (as in Lemma 7.14). If instead it is
a MKHS forgery of type 2 then the message is new since the signing oracle was queried
on <|�∗ for < ≠ H∗, and on no other message with label �∗ due to the rule of the MKHS
security game (as in Lemma 7.16). �
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7.5 Extensions and Instantiations

In this section, we extend our base MKHS construction to support sequential multi-hop
evaluation. Later, we describe a variety of instantiations of MKHS from falsifiable (and
standard) assumptions obtained through BARGs, FCs and SECs introduced in previous
works.

7.5.1 Multi-Hop Evaluation

We show how to adapt our MKHS construction in Figure 7.4 to support multi-hop evalu-
ation of sequential functions 5 (ℎ)( 5 (ℎ−1)(· · · 5 (1)(·))). This construction relies on the same
primitives as before, except that we require a chainable functional commitment CFC instead
of a FC. We remark that, by applying Theorem 4.26, we can generically turn any FC for
circuits into a CFC for circuits. The scheme supports the same labels and messages as the
single-hop scheme.

First, we define a param structure for the input taken by the Eval algorithmwith function
5 , such that we can distinguish whether 5 does a first-hop evaluation, or whether we
compute over a previous output of Eval.

param =

{
(�8 , vk8 , <8 , �8)8∈[ℓ ] if ℎ = 1
(P , {vk8}8∈P ,m(ℎ−1) , �) if ℎ > 1

.

We introduce the scheme in Figure 7.16. The Setup, KeyGen, and Sign algorithms remain
as in Figure 7.4. For security, note that the signature � 5 ,H is as in our single-hop MKHS,
except that it includes multiple CFC commitments and opening proofs (�(9)

5
, com(9−1))9∈[ℎ].

The key observation is that we can see �̄ 5 := (�(9)
5
, com(9−1))9∈[ℎ] as the opening proof for

5 (ℎ) � · · · � 5 (1) on com(0) in the generic CFC-to-FC construction from [BCFL23, Theorem
2]. Hence, from the security standpoint we can interpret the multi-hop scheme as our
single-hop one instantiated with a different FC; thus the same security proof applies.

7.5.2 Instantiations of MKHS for all functions

We describe several instantiations for our construction in Section 7.4 that we obtain by
instantiating its main building blocks. We focus on MKHS for all functions, that we model
as either boolean or arithmetic circuits of unbounded depth. We discuss the properties of the
resulting schemes, in particular their succinctness and the underlying assumptions.

We give two families of MKHS instantiations: those that use non-algebraic FCs and
BARGs (internally relying on correlation-intractable hash functions (CIHs) and probabilistic
checkable proofs (PCPs)), and those that use algebraic constructions of these schemes. CIH
+ PCP based constructions offer nearly-optimal asymptotic succinctness, but the concrete
parameters suffer from an impractical blow-up. Algebraic BARGs and FCs have smaller
concrete parameters, and although our MKHS construction makes non-black-box use of
them, we believe that instantiations based on algebraic building blocks present a more
promising avenue towards fully-algebraic, concretely-efficient future MKHS constructions.
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MKHS.Eval(pp, 5 := 5 (ℎ) , param, ℎ) :

If ℎ = 1:

• Parse param := (�8 , vk8 , <8 , �8)8∈[ℓ ].
• Output (comF ,�� ,�

(1)
5
, com(0)) ← MKHS.Eval0(pp, 5 (1) , (�8 , vk8 , <8 , �8)8∈[ℓ ]).

If ℎ > 1:

• Parse param := (P , {vkid}id∈P ,m(ℎ−1) , �).
• Parse � := (comF ,�� , (�(9)5 , com(9−1))9∈[ℎ−1]).
• Parse pp := (crs, ck, dk).
• Compute m(ℎ) ← 5 (ℎ)(m(ℎ−1)).
• com(ℎ−1) ← CFC.Com(ck,m(ℎ−1)).
• �(ℎ)

5
← CFC.FuncProve(ck,m(ℎ−1) , 5 (ℎ)).

• Output � 5 ,H = (comF ,�� , (�(9)5 , com(9−1))9∈[ℎ]).

MKHS.Ver(pp,P , {vkid}id∈P , y, � 5 ,H) :

• Parse P := ( 5 , �1 , . . . , �ℓ ) and {�8 := (id8 , �8)}.
• If P = ( 583 , �1) then check that Σ.Ver(vkid1 , y|�1 , � 5 ,H) = 1.

• Else, parse � 5 ,H := (comF ,�� , (�(9)5 , com(9−1))9∈[ℎ]).
• Parse pp := (crs, ck, dk).
• Parse 5 := ( 5 (1) , . . . , 5 (ℎ)).
• Compute com(ℎ) ← CFC.Com(ck, y).
• Compute com0 ← FC.Com(ck, 0).
• Compute the BARG circuit C described in Figure 7.5, hardcoding

com(0) , comF , com0.

• Given {vk8}8 := {vkid8}8 and {�8}8 , {ck8}8 , {dk8}8 , define x8 = (vk8 , ck8 , dk8 , dk8−1 , �8 , 8).
• ∀ 9 ∈ [ℎ], check that CFC.FuncVer(ck, com(9−1) , 5 (9) , com(9) ,�(9)

5
) = 1.

• Check that BARG.Ver(crs,C , {x8}8 ,��) = 1.

• Output 1 if all checks pass.

Figure 7.16: MKHS.Eval and MKHS.Ver algorithms of a multi-hop succinct multi-key homomorphic
signature scheme MKHS constructed from a chainable functional commitment CFC, a BARG for NP BARG,
a somewhere extractable commitment SEC and a digital signature Σ. Eval0 is the single-hop Eval from Figure
7.4.

MKHS for unbounded-depth circuits from CIH and PCPs. The natural choices for this
family of BARGs are the constructions in [CGJ+23, CJJ22] from either subexponential DDH
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or LWE, respectively.3 Their efficiency is later refined in [KLVW23].
For functional commitments, the asymptotically optimal choice is to extend the SNARG

for RAM computations from [KLVW23], which can be seen as an FC for single-output
boolean circuits C : {0, 1}ℓ → {0, 1}. Such an FC can be constructed generically from
BARGs, and hence from the same assumptions as before. Extending their SNARG to a
fully-fledged FC for unbounded depth-circuits is not straightforward and requires a series
of observations:

• The commitment scheme underlying their SNARG is deterministic and supports efficient
local updatability as it is implemented as a Merkle tree.

• Their SNARG satisfies FC evaluation binding for RAM computations with a bounded
number of steps, which can be represented by single-output boolean circuits 5 : {0, 1}ℓ →
{0, 1} of bounded depth 3max. To boost their scheme, we can apply our generic transfor-
mation to obtain a CFC from any FC (Theorem 4.26). Since committing to a Merkle tree
can be carried out by a circuit of poly(�, log ℓ ) depth, the transformation yields a CFC for
boolean circuits 5 : {0, 1}ℓ → {0, 1}ℓ of bounded depth 3′max ® 3max, where the opening
proofs have size

��� 5

�� = poly(�, log ℓ ).

• Given such a CFC for boolean circuits of bounded depth, one can obtain a FC for
circuits of unbounded depth 3 by applying the generic CFC-to-FC transformation from
[BCFL23], which imposes a multiplicative overhead of 3 on the opening size. Overall,��� 5

�� = poly(�, log ℓ ) · 3.

Corollary 7.18. Assuming the hardness of either (1) subexponential decisional Diffie-Hellman
(DDH), or (2) learning with errors, there exists a multi-key homomorphic signature for unbounded-
depth boolean circuits ℱ = { 5 : {0, 1}ℓ → {0, 1}ℓH} with the following properties:

• Public parameters size: |pp| = poly(�, log ℓ ).

• Signature size:
��� 5 ,H �� = poly(�, log ℓ , log ℓH) · 3.

• Efficient verification: Both the labels and the function can be preprocessed. The online efficient
verification algorithm runs in time poly(�, log ℓ , ℓH) · 3.

• Multi-hop evaluation and Context-hiding.

MKHS for unbounded-depth circuit from algebraic schemes. Our MKHS can be instan-
tiated over bilinear groups by using the algebraic BARG from [WW22], which relies either
on the subgroup decision assumption or on the :-Lin assumption for any : ≥ 2. In [WW22],
they also present companion constructions of somewhere extractable commitments from
the same assumptions. For the FC, the most natural pairing-based choice are either the
algebraic scheme from [BCFL23], which relies on the HiKer assumption, or the [WW24b],
which relies on bilateral :-Lin. Notably, both FC schemes admit efficient local updatability,
deterministic commitments, and supports efficient verification with preprocessing.

3 In the same works, SECs are constructed from the same assumptions as a building block for BARGs.
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Corollary 7.19. Assuming the hardness of HiKer and either the subgroup decision assumption
or :-Lin for : ≥ 2, there exists a pairing-based MKHS for unbounded-depth arithmetic circuits
ℱ = { 5 :ℳℓ →ℳℓH} of bounded width F with the following properties:

• Public parameters size: |pp| = O
(
F5)

• Signature size:
��� 5 ,H �� = O (

� · 32) + poly(�). In particular, the signature is fully succinct on
both ℓ and ℓH .

• Efficient verification: Both the labels and the function can be preprocessed. The online efficient
verification algorithm runs in time O

(
� · 32) + poly(�).

• Multi-hop evaluation and Context-hiding.

Towards a lattice-based algebraic instatiation, we remark that no lattice-based algebraic
BARGs exist up to date. For FCs, a natural choice may be the lattice-based (C)FC in
[BCFL23], or the scheme that results after applying the transformation of Theorem 4.26 to
the FC in [WW23a].

Improvements due to recent progress on FCs and BARGs. By applying two results that
appeared after our results were published in [ABF24], we can reduce the succinctness
of our MHKS scheme further. First, the succinct functional commitment by Wee and
Wu [WW24b] allows us to replace the HiKer assumption from [BCFL23] by bilateral :-
Lin, obtaining a MKHS for arithmetic circuits where the signature size and the efficient
verification time do not grow with the circuit depth, yielding

��� 5 ,H �� = poly(�). On the other
hand, the public parameters grow with the circuit size as |pp| = O

(�� 5 ��5) .
Second, the circuit-succinct BARG from [BFL25a] that we introduce in Chapter 6 allow

us to remove the dependency in the BARG circuit size. For some instantiations, partic-
ularly those with O(�)-sized (a) commitments, signatures and somewhere extractable
commitment openings, the BARG circuit also has a witness of size O(�). Assembling all
pieces together, this yields a MKHS with evaluated signatures of size

��� 5 ,H �� = O (
�2) . The

quadratic blow-up comes from committing to the witness of the BARG circuit (a few group
elements, i.e., of size O(�)) as boolean values, generating O(�) commitments each of O(�)
size. This comes at the cost of increasing the public parameters to |pp| = O

(
ℓ5

�� 5 ��5) . An
interesting open question is whether we can reduce the MKHS signatures even further,
where a natural lower is

��� 5 ,H �� = O(�).
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8

Modular Sumcheck Proofs and
Applications to Machine Learning and

Image Processing

This chapter is based on results from the article “Modular Sumcheck Proofs with Applications
to Machine Learning and Image Processing” [BFG+23], which was published at ACM CCS
2023.

The chapter is structured as follows. In Section 8.1, we introduce a summary of the
contributions of this work. In Section 8.2, we present ourmodular framework for sumcheck-
based proofs, which allows us to design and compose proof systems for specific function-
alities. In Section 8.3, we show how to instantiate our framework based on multilinear
polynomials, capturing known proof systems. In Section 8.4, we introduce a battery of
composable proof systems for usual machine learning computations, including neural
networks. Finally, in Section 8.5, we implement, analyze and evaluate our solutions both
theoretically and empirically. We also released an open-source library for our sumcheck-
based proofs which is available at https://github.com/imdea-software/MSCProof.

8.1 Contributions

In previous chapters of this thesis, we built proof systems from standard assumptions,
where the focus was more on feasibility and generality than in actual practicality. In this
chapter, we instead tackle the construction of practically efficient proof systems. With this
goal in mind, we introduce a new framework for the modular design of sumcheck-based
proof systems, and we use it to develop new efficient protocols for verifiable machine
learning and image processing. Our solutions aim to combine the efficiency of dedi-
cated protocols and the versatility of general-purpose schemes. More specifically, our
contributions are the following:

A modular framework for sumcheck-based proofs. We develop our framework by
identifying and abstracting away the key properties of a variety of proof systems based
on the sumcheck protocol, including the well-established GKR protocol [GKR08]. Briefly
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speaking, these protocols proceed in a layer-by-layer fashion so that at each layer the prover
starts by making a “promise” about the output, and later the verifier ends with a “promise”
about the input. Their security guarantee is that if the input’s “promise” is correct then
the initial output’s “promise” must be correct too.

We define our framework abstracting these protocols as follows:

• We introduce the notions of fingerprinting scheme and verifiable evaluation scheme on
fingerprinted data (VE). Fingerprinting schemes characterize the aforementioned no-
tion of “promise” and are essentially a mechanism that allows prover and verifier to
succinctly represent vectors of inputs/outputs. VEs are interactive protocols in which
the verifier works by only knowing fingerprints of inputs and outputs (and thus can
run sublinear in the input/output size).

• We show a generic composition theorem: given two VEs for functions 51 and 52 and
compatible fingerprints, one can build a VE for their (partial or total) composition
5 (G, H) = 52( 51(G), H).

• We show that a VE can be lifted to become an interactive proof if the verifier computes the
fingerprints of the inputs and outputs of the computation (but not of intermediate
steps). We also show that a VE can be compiled into a succinct argument by using commit-
and-prove arguments for the evaluation of fingerprints (instantiatable with polynomial
commitments [KZG10]).

• We instantiate our fingerprints as evaluations of multilinear polynomials, and then
we show how to capture a large class of existing protocols—such as the multilinear
sumcheck protocol of [XZZ+19], GKR, and the efficient matrix multiplication from
[Tha13]—under our framework.

By combining these results, we obtain a way to easily design sumcheck-based proof
systems in a modular way. Following the principle of modularity, one needs only to focus
on designing VE schemes for specific functionalities, a task that likely results in more
lightweight solutions (as we confirm below). In particular, we may take advantage of many
years of great research in the field, as our modular design allows us to nicely integrate
previous tools and gadgets. Furthermore, the practicality of modular VEs is not only
evident at design time, but also at implementation time, since the code can be designed in
blocks, in a ”Lego” manner.

Applications to verifiable machine learning and image processing. We apply our ap-
proach to construct efficient proofs of computation for (convolutional) neural networks and
image processing. Both processes have a layered structure that is amenable to our modular
framework. Therefore, we build a VE protocol for the full computation by composing
several “gadgets” VEs for each layer (including existing and new VEs that we develop –
see below), and then we use a multilinear polynomial commitment to compile it into an
argument of knowledge. Following the modularity principle, then we focus on designing
efficient VEs for the main subroutines needed by these applications.
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In this application context, our main contribution is a new VE scheme for convolution
operations which is amenable to multiple input-output channels and also to prediction
batching. Convolution is a challenging operation in proof systems, as it is represented
by arithmetic circuits with complex wiring (and up to O

(
=3) size for convolutions over

a = × = matrix) which is expensive for general purpose solutions. The most efficient
dedicated protocol in the literature appears in zkCNN [LXZ21], which proposes a fast
proving technique for Fast Fourier Transform (FFT), achieving asymptotically optimal
O

(
=2) proving time. Nevertheless, their approach requires proving an FFT, a Hadamard

product and an inverse FFT, which increase concrete proof size and prover time. Moreover,
in their case the convolution kernel, which is often small in applications, needs to be
padded to the input size.

We overcome these limitations by designing a compact matrix encoding of the convo-
lution operation to which we apply the efficient matrix multiplication prover in [Tha13].
Crucially, we optimize our technique to efficiently support multiple channels (both input
and output), which is when our solutions improve even more over the zkCNN’s approach.
Notably, our convolution VE achieves proof size and verifier time that are independent
from the input size and the number of output channels.

We obtain further improvements by designing VE gadgets that extend techniques
originally proposed in the context of the GKR protocol for arithmetic circuits. Notably, we
propose a VE for “many-to-one reductions” for input fingerprints that extends the GKR-
specific technique of [ZLW+21], and we generalize the blueprint from Hyrax [WTs+18] in
order to efficiently batch the executions of the same VE on different inputs, e.g., .8 = �(-8)
for 8 = 1 to # .

Finally, we leverage our framework to construct the first dedicated proof system for
recurrent neural networks.

Implementation and evaluation. We implement and benchmark our efficient convolution
prover in Rust and confirm the concrete improvements (in overall efficiency and proof size)
over the state-of-the-art [LXZ21] for common sets of parameters. Even for a single-channel
convolution, our VE improves over previous solutions by a factor of 5-10× in proof size,
and by a similar factor in prover time for small kernel sizes. We additionally benchmark
the prover time for the convolutional layers of the VGG11 model.

8.2 Composition Framework for Interactive Proofs

We introduce a framework for building interactive proofs from the composition of function-
specific protocols. Our framework consists of three main components: (1) fingerprinting
schemes, that are a mechanism with which prover and verifier can succinctly represent
inputs and outputs of the computation; (2) verifiable evaluation schemes on fingerprinted
data (VE), that are the function-specific protocols in which the verifier works by only
knowing fingerprints of inputs and outputs; (3) a composition theorem which shows how
to compose VEs, in such a way that the verifier only needs to compute fingerprints for
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the main input and output of the computation, but not for the intermediate inputs of the
sequential steps.

In this section, we define the syntax and the security property of these objects, state
and prove the composition and finally also show how to compile a VE scheme into succinct
arguments.

Definition 8.1 (Fingerprint). Let X be a data space, DX a distribution over a randomness
space ℛX , and C a finite set. A randomized fingerprint (with fingerprint space C ) is a function
H : X × ℛX → C . Given G ∈ X , A ∈ ℛX , we call 2G ← H(G, A) the fingerprint of G on A.
Furthermore, we say that a fingerprint H is (statistically) sound forDX if for any pair G, G∗ ∈ ℳ
such that G ≠ G∗, we have

Pr
A←$ℛX

[H(G, A) = H(G∗ , A)] = negl(�).

For vectors of inputs x ∈ ∏"
8=1ℳ8 and randomness r ∈ ∏"

8=1ℛℳ8
, we use the compact

notation H(x, r) B (H(G1 , A1), . . . ,H(G" , A")).

The distributionDℳ is an abstraction that allows us to capture sampling (e.g. via a
uniform distribution) from a space which is yet undefined. The randomness space ℛℳ
may depend on the data spaceℳ and on the security parameter � of the scheme, that will
generally be implicit. For instance, large domains may require large randomness spaces1.

Fingerprints and CRHFs Even though their syntax presents similarities, fingerprints
are strictly weaker objects than collision-resistant hash functions (CRHFs). Fingerprints
are only guaranteed to be sound if the randomness A is randomly sampled, as opposed
to controlled by the adversary. Also, the input G has to be chosen by the adversary
before seeing A. The closest notion to our fingerprints are universal hash functions (when
instantiated over an exponentially large output space).

8.2.1 Verifiable Evaluation Schemes on Fingerprinted Data

For our framework we consider a class of interactive proofs for the language ℒℱ =

{( 5 , G, H) : 5 ∈ ℱ ∧ 5 (G) = H}, which have the following structure (cf. Figure 8.1):

1. Prover and verifier agree on a common fingerprint 2H = H(H, AH). As an example, the
verifier samples and sends randomness AH ←$DY to the prover, and both parties compute
2H independently.

2. Prover and verifier interact on common input ( 5 , 2H , AH) through subroutines VE.P(G)
and VE.V(AG) respectively. Notably, neither G nor H are used by the verifier in this part of
the interaction. At the end of a successful interaction, both parties agree on a common
fingerprint 2G and randomness AG .

3. The verifier checks that 2G = H(G, AG) and rejects otherwise.
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〈P,V〉( 5 , G, H)
Prover Verifier

AH ←$DY

2H ← H(H, AH) 2H ← H(H, AH)
AG ←$Dℳ

2G , AG
〈VE.P(G),VE.V(AG)〉( 5 , 2H , AH) 2G , 1

1′← [2G = H(G, AG)]
return 1 ∧ 1′

Figure 8.1: Interactive proof constructed from a verifiable evaluation scheme on fingerprinted data VE and a
fingerprinting scheme H.

In other words, these are interactive proofs that manage to reduce the check 5 (G) = H

into a simpler verification that only involves the fingerprints of the output (computed in
step (1)) and of the input (computed in step (3)). In this work, we formalize the primitive
that takes place in step (2), thatwe call (interactive) verifiable evaluation scheme on fingerprinted
data (VE). The goal of a VE scheme is to prove that, given an admissible function 5 and
fingerprints cG , cH , then cG is a valid fingerprint to the input G and cH is a valid fingerprint
to 5 (G). Contrary to the intuitive setting where the interaction starts with both parties
having a common input G (or fingerprint cG) and finishes on 5 (G) (or cH), VE interactions
start at a common output fingerprint cH and finish with both parties agreeing on an input
fingerprint cG .

Definition 8.2. A verifiable evaluation scheme on fingerprinted data VE for a family of
functions ℱ is a pair of interactive algorithms (VE.P, VE.V) that, given as prover input x; as
verifier input randomness rx; and as common input fingerprints cy, randomness ry, and a function
5 ∈ ℱ , the interaction outputs

(cx; rx; 1) ←$ 〈VE.P(x),VE.V(rx)〉 (cy , ry , 5 )

Where cx is a common output, rx a prover output, and 1 a verifier output. Furthermore, the verifier
VE.V is public-coin.

The scheme VE is correct if for any valid pair ( 5 ,x) and randomness rx , ry, we have that

Pr


cx = H(x, rx)
∧ 1

�������
cy ← H( 5 (x), ry)
(cx; rx; 1) ←$ 〈VE.P(x),VE.V(rx)〉

(cy , ry , 5 )

 = 1

Our definition considers families of functions with multiple inputs and outputs, and
also with multiple input-output fingerprints. Inputs and outputs may correspond one-
to-one with fingerprints, but it is also possible that several fingerprints (computed on
1 We writeDℱ to refer toDℳ when the domainℳ is defined by a family of functions ℱ .
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8. Modular Sumcheck Proofs and Applications

different randomness) correspond to a single input or output. For compactness, we write
vectors cx , rx (respectively cy , ry) where cG ,8 ∈ C corresponds to rG ,8 ∈ ℛℳ.

The security that is required for VEs is that, if cx are valid fingerprints of x and
the verifier accepts, then cy are guaranteed to be valid fingerprints of 5 (x) (except with
negligible probability). As we will show later, this property is very useful for composing
VEs. We remark that security only holds when the fingerprints of the inputs cx are honest.

Definition 8.3 (VE Soundness). A VE scheme VE is statistically (resp. computationally) sound
if for any stateful unbounded (resp. PPT) adversaryA, the following probability is negl(�):

Pr


c∗y ≠ H( 5 (x), ry)
∧ 1

������������

rx , ry ←$Dℱ
(c∗y ,x, 5 ) ← A(ry)
(c∗x; rx; 1) ←$ 〈A(x),VE.V(rx)〉

(c∗y , ry , 5 )
c∗x = H(x, rx)


where the probability is taken over the choices of rx , ry, the randomness ofA and any additional
randomness used by VE.V.

Next, we show that VE security is indeed sufficient for building a sound interactive
proof as described in Figure 8.1.

Proposition 8.4. The protocol in Figure 8.1 is an interactive proof.

Proof. For simplicity, we consider the single-input and single-fingerprint case; the general
case follows easily. Completeness follows from the correctness of the VE and the fingerprint.
For soundness, letA be an adversarial prover that makes the verifier accept for ( 5 , G, H∗) ∉
ℒℱ where 5 (G) = H ≠ H∗. We want to show that then one can useA to break either the
soundness of the fingerprint or the soundness of the verifiable evaluation scheme.

We consider two events. �1 is the event that V accepts and 2H = 2∗H , where 2H =

H(H, AH) and 2∗H = H(H∗ , AH), and �2 is the event that V accepts and 2H ≠ 2∗H . �1 and �2 are
complimentary and clearly

Pr[A wins] = Pr[�1] + Pr[�2].

If �1 occurs, then we have a collision on the output fingerprint where AH ←$ DY . By
fingerprint soundness, Pr[�1] ≤ Pr[2H = 2∗H] = negl(�).

If �2 occurs, it is easy to construct an adversary ℬ that breaks VE soundness. On
input AH ←$ DY , ℬ runs the interactive proof in Figure 8.1 usingA as a prover and on
randomness AH . Note that AH is sampled from the same distribution in the interactive proof
and in the VE security game. Then, ℬ outputs the fingerprint 2∗G output byA after the
interaction. Since the verifier accepts, we have that 1 = 1 and that 2G = H(G, AG). Hence,

Pr[�2] = Pr[V→ 1 ∧ 2H ≠ 2∗H]
= Pr[1 = 1 ∧ H( 5 (G), AH) ≠ 2∗H | 2G = H(G, AG)]
= Pr[ℬ wins VE game] = negl(�).

�
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8.2.2 Composition of VEs

Next, we show that the composition of VEs that use the same fingerprint scheme is also a
VE. This allows for constructions of modular interactive protocols for sequential functions.

Let 5 be composed of several sub-functions 51 , . . . , 5= , that can place left-to-right in a
pipeline fashion (see Figure 8.2). The high-level approach of this procedure is the following:
1) start on a fingerprint of the output of 5 (i.e., on the right) that both prover and verifier
trust; 2) run the VE schemes for the 58 in a right-to-left order (starting with 5=); while 3)
collecting fingerprints to inputs of the 58 obtained throughout the interaction and using
them as output fingerprints for sub-functions on the left. At the end of the interaction,
the verifier needs to check one or multiple input fingerprints. In Figure 8.2, we show this
procedure in a block diagram.

Computation

Verification

Figure 8.2: Composition of VEs for functions 51 , 52 following Proposition 8.5. Top half: computation of
52( 51(x), x̄), operations are left-to-right. Bottom half: composition of VE2 and VE1, interaction is right-to-
left.

Proposition 8.5 (Composition of VEs). Letℳ =
∏"

8=1ℳ8 , Z =
∏!

8=1Z8 , ℳ̄ =
∏!′

8=1 ℳ̄8

and Y =
∏#

8=1Y8 be domains. Let also 51 : ℳ → Z and 52 : Z × ℳ̄ → Y . Finally, let
5 :ℳ×ℳ̄ → Y be the function given by the (partial) composition 5 (x, x̄) B 52( 51(x), x̄).

Then, given verifiable evaluation schemes VE1 and VE2 for 51 and 52 based on the same finger-
print scheme, the composition protocol VE obtained by running VE2 and then VE1 as in Figure 8.2
is a verifiable evaluation scheme for 5 .

Proof. Let A be a successful adversary against VE. On input rH ←$ Dℱ , A outputs
({2∗

H8 , 9
}9 , (x, x̃), 5 ) such that, for y = 5 (x, x̃), then 2∗

H8 , 9
≠ H(H8 , AH,9) for some 9. We use the

index 9 to index the collection of fingerprints independently from the index 8 of the input
they refer to. Then, the verifier VE.V accepts in the interaction on input ({2∗

H8 , 9
}9 , rH , 5 ).
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We will show that in this caseA must break soundness of either VE1 or VE2. First, let
z = 51(x) (following the notation in Figure 8.2) and y = 52(z, x̃). Then, we can distinguish
between two events based on the behaviour of the adversary. Let �1 be the event that
2∗
I8 , 9′

≠ H(I8 , AI,9′) for some 9′, and let �2 be the event that 2∗
I8 , 9

= H(I8 , AI,9) for every 9. Note
that it is possible to determine which event occurs since the protocol is public-coin and so
all honest fingerprints can be recomputed in polynomial time.

If �1 occurs, thenA breaks soundness of VE1 as the output fingerprint 2∗
I8 , 9′

does not
match its honest counterpart, while the input fingerprints are honest by assumption. If �2

occurs, then every 2∗
I8 , 9

is honest. As these are the input fingerprints to VE2, it follows that
A must break soundness of VE2. �

By combining Proposition 8.5 and Proposition 8.4, we obtain a framework for compos-
ing arbitrary evaluation schemes for different functions that can be later compiled into
an interactive proof. Regarding efficiency, the communication complexity and running
time of the resulting protocol grows additively for both prover and verifier, as VEs are run
sequentially.

For clarity, in the following sections we use a parametrization for VE schemes that we
define as follows.

Definition 8.6 (Parametrization of VEs). A verifiable evaluation scheme VE is parametrized by:

• the fingerprint scheme H,

• the (family of) admissible functions ℱ = { 5 :ℳ→ Y},

• the input and output (vectors of) fingerprints cx, cy,

• the communication complexity |�| (of prover messages, i.e., we do not consider verifier challenges)

• the prover and verifier running time tP, tV,

• and the soundness &.

8.2.3 From VEs to Arguments of Knowledge

We show how to use a VE to build a commit-and-prove interactive argument of knowledge
Π B (Setup,P,V) for the relation

ℛΠ =
{
( 5 , comG , y;x, >G) : 5 ∈ ℱ ∧ 5 (x) = y ∧ Com.Ver(ck, comG ,x, >G)

}
where >G is the opening for the committed x.

To enable this proof, we need the following building blocks:

• a commitment scheme Com B (Setup,Com,Open,Ver),

• an argument of knowledgeAoKH B (Setup,Prove,Ver) for the relationℛH = {(cG , comG , AG;
x, >G) : Com.Ver(ck, comG ,x, >G) = 1 ∧ cG = H(x, AG)}, where ck← Com.Setup(1�) (note
that we can instantiate this with a multilinear polynomial commitment).,
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• an AoKCom for the ”proof of knowledge” relation ”I know the x committed in comG”
given by ℛPoK = {(comG;x, >G) : Com.Ver(ck, comG ,x, >G)}.

• and a VE scheme for a family of functions ℱ .

The idea, described in Figure 8.3, is a generalization of the vSQL approach [ZGK+17]
and relies on the observation that in the VE protocol the verifier does not need to know
neither x nor y but only their fingerprints 2x , 2y. In the VE-to-IP construction, the verifier
would test if 2x = H(x, AG) and 2y = H(y, AH). In the AoK, the verifier instead holds a
commitment comG , and we let the prover show the correctness of the fingerprint 2x w.r.t.
the committed x.

Proposition 8.7. Π B (Setup,P,V) is an interactive argument of knowledge for the relation ℛΠ.

Proof. We have to show that for any PPT proverA there exists an extractor ℰ that, given
access toA’s input and random tape as well as the entire transcript CA of an interaction
〈A,Π.V〉(crs, crs′) (which includesA’s choice of the statement ( 5 , comG , y

∗)), can extract a
witness F = (x, >G) such that

Pr[〈A,Π.V〉 → 1 ∧ (( 5 , comG , y
∗), (x, >G)) ∉ ℛΠ] = negl(�)

We proceed as follows.
First, for any adversaryA we can build the following two adversariesA1 andA2. A1

is an adversary against AoKCom that, on input crs′ and auxiliary input consisting of crs
and a random tape �A, simply runsA(crs, crs′; �A) until it outputs the first message �1,
and then returns �1. A2 is an adversary against AoKH that, on input crs and auxiliary
input consisting of crs′, random tape �A, and a transcript CAV of random public coins for
an execution of VE.V, runs A(crs, crs′; �A) until the end so as to obtain �2, and then it
outputs �2.

Second, by applying the knowledge-soundness of AoKCom and AoKH we obtain that
there exist corresponding extractors ℰ1 ,ℰ2 that return (x′, >′G) and (x′′, >′′G ) respectively.
Therefore, we construct the extractor ℰ as the algorithm that, on input (crs, crs′, �A , CAV),
runs (x′, >′G) ← ℰ1(crs′; (crs, �A)), and (x′′, >′′G ) ← ℰ2(crs; (crs′, �A , CAV)), and returns
(x′, >′G).

Third, we argue that the probability that the verifier accepts and the witness returned
by ℰ is wrong is negligible. To this end, let us define the following events:

• For 8 = 1, 2, let bad8 be the event that ℰ8 outputs an invalid witness for �8 and corre-
sponding commitment comG .

• Let coll be the event that both (x′, >′G) and (x′′, >′′G ) are valid openings of comG , butx′ ≠ x′′.

• Let badH be the event that y∗ ≠ 5 (x′).

Let us define some shorthands for relevant events in the execution ofℰ. Let Ev B acc∧badℰ
where acc denotes the event that the AoK verifier accepts, “〈A,Π.V〉 → 1”, badℰ is the
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Π.Setup(1� , ck):

• crs← AoKH.Setup(1� , (ck,ℛH))
• crs′← AoKCom.Setup(1� , (ck,ℛCom))
• return (crs, crs′).

Π.P((crs, crs′), ( 5 , comG , y;x, >G)):

• �1 ← AoKCom.Prove(crs′, (comG;x, >G))
• Send �1 to V

• Get AH ←$Dℱ from V

• 2y ← H(y, AH)
• Run (2x , AG) ← VE.P(x, 5 , 2y , AH) interactively with V.

• �2 ← AoKH.Prove(crs, (2x , comG , AG;x, >G))
• Send �2 to V

Π.V((crs, crs′), ( 5 , comG , y)):

• Get �1 from P

• Send AH ←$Dℱ to P and compute 2y ← H(y, AH)
• AG ←$DX
• Run 10 ← VE.V(AG , 5 , 2y , AH) interactively with P.

• Get �2 from P

• 11 ← AoKCom.Ver(crs′, comG ,�1)
• 12 ← AoKH.Ver(crs, (2x , comG , AG),�2)
• return 10 ∧ 11 ∧ 12

Figure 8.3: Construction of an interactive argument of knowledgeΠ for the relation ℛΠ from a commitment
scheme Com such that ck← Com.Setup(1�), arguments of knowledge AoKCom for ℛPoK and AoKH for ℛH,
and a VE scheme for ℱ .
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event “(( 5 , comG , y
∗), (x′, >′G)) ∉ ℛΠ”, and bad B bad1 ∧ bad2. Note that badℰ B ( 5 (x′) ≠

y∗) ∨ Com.Ver(ck, comG ,x
′, >′G) = 0.

Then it holds

Pr[Ev] ≤
2∑
8=1

Pr[Ev ∧ bad8] + Pr[Ev ∧ bad]

≤ negl(�) + Pr[Ev ∧ bad ∧ coll] + Pr[Ev ∧ bad ∧ coll]
≤ negl(�) + Pr[Ev ∧ bad ∧ coll].

where the first inequality follows by applying a union bound, the second one by the
knowledge soundness of AoKCom and AoKH, and the third one follows by the computational
binding of the commitment scheme. Next, we show that Pr[Ev ∧ bad ∧ coll] is negligible
under the statistical soundness of the fingerprinting scheme and of the VE scheme. To this
end, we partition over the event 2y = H(y, AH) = H( 5 (x′), AH), i.e.,

Pr[Ev ∧ bad ∧ coll] ≤ Pr[H(y, AH) = H( 5 (x′), AH)]
+Pr[Ev ∧ bad ∧ coll ∧ 2y ≠ H( 5 (x′), AH)].

Asx′ is extracted before the randomchoice of AH weobtain thatPr[H(y, AH) = H( 5 (x′), AH)] =
negl(�) by the soundness of the fingerprinting scheme.

Since acc includes the event 10 = 1 and by simplifying the events in ‘Ev ∧ bad ∧ coll’,
we have

Pr[Ev ∧ bad ∧ coll ∧ 2y ≠ H( 5 (x′), AH)]
≤ Pr

[
10 ∧ 2y ≠ H( 5 (x′), AH) | 2x = H(x′, AG) ∧ 5 (x′) ≠ y′

]
= &.

Consider an adversaryA and its corresponding ℰ shown above such that the above
& is non-negligible. Then we can build a VE adversary ℬ that breaks soundness with
probability & as follows. Recall that ℬ(AH) breaks VE soundness if, before the interaction, it
outputs a fingerprint 2y such that 2y ≠ H( 5 (x′), AH).

1. ℬ(AH), on input a random challenge AH , honestly generates crs, crs′ and a suitable random
tape �A, runsA(crs, crs′; �A) until “send �1 to V” to obtain ( 5 , comG , y) and the proof
�1.

2. Runs the extractors (x′, >′G) ← ℰ1(crs′; (crs, �A)).

3. Compute 2y = H(y, AH) and outputs (2y ,x′, 5 ).

4. ℬ sends AH toA and then interacts with VE.V in its soundness game on common input
(2y , AH , 5 ), by forwarding all themessages from VE.V toA. Namely,ℬ runs (2x , AG; 10) ←
〈A,VE.V〉 and then executes the last step ofA to obtain �2. Let CAV be the transcript of
V’s coins in this interaction (including AH and VE.V’s coins).

5. Runs the extractor (x′′, >′′G ) ← ℰ2(crs; (crs′, �A , CAV)).

6. Aborts if either any of the events {bad1 , bad2 , coll} occurs. Otherwise, returns (2x , AG)
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As one can see, ifA and ℰ are such that the above event occurs with probability &, then ℬ
wins in the VE soundness experiment with the same probability &.

�

The protocol Π described above is a public-coin interactive protocol that can be easily
compiled into a non-interactive argument. As usual in the literature, security is argued in
the random oracle model, via the Fiat-Shamir heuristic [FS87].

Finally, we observe that, similarly to zkCNN, we can obtain a zero-knowledge AoK for
ℛΠ by using existing approaches [CFS17, XZZ+19] based on zero-knowledge sumcheck
and low-degree extensions. More precisely, starting from the (non-ZK) VE scheme, we
first apply the information-theoretic compiler based on zero-knowledge sumcheck from
Libra ([XZZ+19], Section 4.1). Then, we require a ZK-AoK for H in the compilation to a
succinct argument. For the first step, we also need to mask the fingerprints obtained by the
verifier to avoid leakage of intermediate values. This can also be done following ([XZZ+19],
Section 4.2).

8.3 Verifiable Evaluation from Multilinear Polynomials

In this section, we reinterpret the line of work for the delegation of computation via sum-
checks of multilinear polynomials, initiated by the GKR protocol [GKR08] and continued
by [CMT12b, Tha13, XZZ+19, ZLW+21], in the framework introduced in Section 8.2. We
show that the notion of verifiable evaluation scheme captures the soundness properties
of these core protocols, and we provide a modular approach such that they are easily
composable with function-specific VEs. This allows us to compose these existing protocols
with the new VE schemes that we propose in the next section.

First of all, we define a fingerprint based on multilinear extensions. From this point,
we adopt the convention that � = blog|F|c for a field F.

Proposition 8.8. Let F be a field, x̃ be the multilinear extension of x ∈ F= , and ℓ = dlog =e. Then,
the evaluation of a multilinear extension at a point r ∈ Fℓ , given by x̃(r) ← HMLE(x, r), is a
statistically sound fingerprint for the uniform distribution over Fℓ .

Proof. Given two inputs x,x∗ and r←$ F3 such that x ≠ x∗, we have that

Pr[x̃(r) = x̃∗(r)] = Pr[(x̃ − x̃∗)(r) = 0] ≤ 3/|F|.

where the bound follows by the Schwartz-Zippel lemma (Theorem 3.16). �

Multinear sumcheck VE. The following result is a generalization of the multilinear
sumcheck-based delegation schemes in the literature, particularly of those introduced in
[Tha13, XZZ+19]. The prover time depends on the time required to compute the multi-
linear extension of each polynomial factor 5:,8 as described below. Note that when the
multilinear sumcheck is described in the VE framework, the function 5 corresponds to
the sum of the evaluations over {0, 1}ℓ , while the polynomial factors 5:,8 ∈ F[G1 , . . . , Gℓ ]
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correspond to the input and are not necessarily known to the verifier. In most practical
cases, B = 1 and C is a small constant (such as C = 2).

Proposition 8.9. Let x be a vector of ℓ variables, F a finite field and 
8 ∈ F for 8 = 1, . . . , B. Let
also

5 (x, y) =
B∑
8=1


8

C∏
:=1

5:,8(x:,8 , y)

where each factor 5:,8 is a multilinear polynomial over F evaluated on a subvector x:,8 ⊂ x. Then,
the multilinear sumcheck protocol VEML in Figure 8.4 is a MLE-based VE scheme for the relation

5H(rH) =
∑

x∈{0,1}ℓ
5 (x, rH).

VESC is parametrized by one output fingerprint com 5H = 5H(rH), B · C input fingerprints com:,8 =

5:,8(r:,8 , rH) where each r:,8 ⊂ r ∈ Fℓ , communication complexity |�| = (ℓ + B) · C · �, verification
time tV = O(C · ℓ ), and soundness & = Cℓ/|F|. Furthermore, given that �:,8 is the time required to
compute the MLE of 5:,8(x:,8 , ·), the prover time is tP = O

(
B · C2 ·max:,8 �:,8

)
.

Proof. First, we recall that the sumcheck protocol over a field F for a ℓ -variate polynomial
of degree C has soundness Cℓ/|F| [LFKN92].

Correctness, communication complexity and efficiency follow from inspection of Figure
8.4 and from the efficient sumcheck and padding techniques in previous work [XZZ+19,
ZLW+21]. For soundness, consider a successful adversary against VE soundness that, given
an output fingerprint com∗

5H
≠ 5H(rH), makes VESC.V accept. Let also 6′1(G1), . . . , 6′ℓ (Gℓ ) be

the sequence of degree C polynomials that correspond to running the protocol honestly,
in addition to the constant polynomial 6′0 = 5H(rH). By definition of VE soundness, we
have that all input fingerprints are honestly computed, i.e., com:,8 = 5:,8(r) for every :, 8.
Therefore, as the final check of Figure 8.4 verifies, it must be that 6̂ℓ (Aℓ ) = 6′

ℓ
(Aℓ ). We

conclude that the adversary must have found a collision during the sumcheck, which
occurs with probability & = Cℓ/|F|. �

8.3.1 VE for GKR layers

In the celebrated GKR protocol [GKR08], prover and verifier interact in a series of sum-
checks that take place at every layer of the circuit. Each of these sumchecks can be written
as a VE scheme with multiple input fingerprints (and possibly multiple output fingerprints
too). This interpretation is straightforward following Proposition 8.9; it also addresses
the observation that the add and mult gate predicates can be replaced by alternative gate
predicates, in order to support other operations efficiently as mentioned in [XZZ+19], or
larger fan-in such as in [LXZ21].

Following the notation from Libra [XZZ+19], we write +8 for the output values at
the gates of the circuit at layer 8 (interpreted as a function +8 : {0, 1}ℓ8 → F) and +̃8 its
multilinear extension. We define the wiring predicates add8 ,mult8 : {0, 1}ℓ8+2ℓ8−1 → F,
which take one gate label H ∈ {0, 1}ℓ8 and two gate labels G1 , G2 ∈ {0, 1}ℓ8−1 , and output 1 if
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VESC.P(com 5H , AH , 5 ) VESC.V(com 5H , AH , r)

• Evaluate 5:,8(x:,8 , rH) for all :, 8

• 6̂0 ← 2 5H

• for 9 = 1 . . . ℓ :

• for 3 = 0 . . . C :

• < 9 ,3 ←
∑

b∈{0,1}ℓ−9
∑B
8=1 
8

∏C
:=1 5:,8(A1 , . . . , A 9−1 , 3, b, rH)

• Send m9 = (< 9 ,0 , . . . , < 9 ,C) ∈ FC+1

• Interpolate 6̂9−1 from m9−1

• Check [6̂9−1(A 9−1) = < 9 ,0 + < 9,1]

• Send A 9

Final round:

• Send com:,8 = 5:,8(r:,8 , rH), for all :, 8

• Interpolate 6̂ℓ from mℓ

• Check
[
6̂ℓ (Aℓ ) =

∑B
8=1 
8

∏C
:=1 com:,8

]
• Set 1 ← 1 if all checks pass

Output
(
{2:,8}:,8 , r

)
Output

(
{2:,8}:,8 , 1

)
Figure 8.4: Multilinear sumcheck protocol VESC.

gate H is an addition (respectively a multiplication) gate that takes the outputs from gates
G1 , G2 in the previous layer. Therefore, for any H ∈ {0, 1}ℓ8 , we can write +8+1 as

+8+1(H) =
∑

G1 ,G2∈{0,1}ℓ8
add8(H, G1 , G2)(+8(G1) ++8(G2))

+mult8(H, G1 , G2)(+8(G1) ·+8(G2)). (8.1)

In the protocol, prover and verifier start on a common fingerprint of the output+8+1(rH)
and then run the multilinear sumcheck from Figure 8.4. At the end of the sumcheck, in
which the prover sends a total of 2·ℓ8 polynomials, the verifier needs to check the consistency
of the prover’s claims by using thewiring predicates. Namely, it needs to compute (or re-use
in a layer above) the following fingerprints: +̃8(r1), +̃8(r2), ˜add8(rH , r1 , r2), ˜mult8(rH , r1 , r2).

The following result is a reinterpretation of [XZZ+19], and in particular the observation
that the prover time is linear in 2ℓ where ℓ = max{ℓ8 , ℓ8+1} due to the sparsity of ˜add8 , ˜mult8
and Lemma 3.17. The proof follows from Proposition 8.9.

200
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Proposition 8.10. The interactive protocol that takes place at a GKR layer is a VE scheme VEGKR

for all functions computable by a single-layered arithmetic circuit with gates of fan-in 2. The scheme
is parametrized by 1 output fingerprint (of+8+1), 4 input fingerprints (2 of+8 , 1 of add8 , 1 of mult8),
communication complexity |�| = (3 · ℓ + 4) · �, prover time tP = O

(
2ℓ

)
, verifier time tV = O(ℓ ),

and soundness & = 2ℓ/|F|.

8.3.2 VE for Many-to-One Reductions

Multivariate sumcheck-based VEs often present the issue that, from a single output fin-
gerprint, the interaction yields multiple input fingerprints to be checked by the verifier
at a later time. For GKR layers, the two input fingerprints of +8 obtained shall be used
as output fingerprint for layer 8 − 1. To avoid an exponential blow-up on the number of
fingerprints to be checked, the original GKR protocol proposes a 2-to-1 reduction protocol
that, given two fingerprints of any x, it reduces them to a single fingerprint. An alternative
to the 2-to-1 reduction is to use a random linear combination on the sum [CFS17].

Below we formalize 2-to-1 reductions in the VE framework and generalize it to a <-to-1
reduction. The result extends GKR-specific techniques from Virgo++ [ZLW+21].

Proposition 8.11. Let x ∈ F= and let x̃(r1), . . . , x̃(r<) be MLE fingerprints on r8 ∈ Fℓ . Let also

8 ∈ F for 8 = 1, . . . , <, let �(u, v) be the indicator function on the boolean hypercube such that
�(u, v) = 1 if u = v and is zero elsewhere, and define

5 (y) =
<∑
8=1


8 · x(r8) =
(
<∑
8=1


8 · �̃(r8 , y)
)
· x̃(y).

Then, running the multilinear sumcheck protocol from Figure 8.4 on 5 (y) yields a VE scheme VEm-1

parametrized by < output fingerprints x̃(r8), < + 1 input fingerprints (�(r8 , rH) for 8 = 1, . . . , <
and x̃(rH)), communication complexity |�| = (3 · ℓ + < + 1) · �, prover time tP = O

(
< · 2ℓ

)
,

verifier time tV = O(< + ℓ ), and soundness & = (2ℓ + 1)/|F|.

Note the additional soundness loss of 1/|F|with respect to the sumcheck, which comes
from the choice of the 
8 . It is straightforward to express the random linear combination
approach from [CFS17] as a VE, also following Proposition 8.9. Such VE is parametrized
by 2 input fingerprints (of +8+1), and 6 output fingerprints (2 of +8 , 2 of add8 , 2 of mult8).

Evaluation of mult, add and structured predicates. In all VEs introduced so far, including
those in Proposition 8.10 and 8.11, the number of input fingerprints is larger than the
number of output fingerprints. Some of these fingerprints correspond to unstructured
data (such as the values at a circuit layer or an external input), but most of them have a
regular structure such as wiring predicates mult, add and indicator functions.

When multiple VEs are composed, fingerprints coming from structured data may
be checked directly by the verifier, as opposed to plugged into other VEs. There exist
essentially two design choices available:
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• The verifier recomputes the multilinear extensions on its own. In many cases, one
can benefit from parallelism [CMT12a], or from sparsity [XZZ+19]. In [HR18], it is
shown that most simple predicates (those expressible as read-only branching programs),
including many regular wiring patterns such as indicator functions, can be evaluated in
logarithmic time (i.e. polynomial in ℓ ).

• The verifier performs a pre-processing phase or relies on a trusted third party to compute
(multilinear) polynomial commitments to the data. Then, the prover provides an opening
proof on the required point. In this setting, the evaluation is outsourced to the prover,
similarly to what is done for instance in Spartan [Set20].

8.3.3 Efficient Matrix Multiplication

Among the protocols that we can capture in our framework, a notable example is the
efficient interactive protocol for matrix multiplication from [Tha13]. The main idea of the
protocol is to express the product of two matrices � = � · � where �, �, � ∈ F=×= as a
polynomial identity as

�(x1 ,x2) =
∑

y∈{0,1}ℓ
�(x1 , y) · �(y,x2) (8.2)

Then, the interaction follows the sumcheck in Figure 8.4. Namely, given r1 , r2 ∈ Fℓ , both
parties carry out a sumcheck over

�̃(r1 , r2) =
∑

y∈{0,1}ℓ
�̃(r1 , y) · �̃(y, r2). (8.3)

The protocol is therefore a VE scheme parametrized by two input fingerprints �̃(r1 , r3),
�̃(r3 , r2), an output fingerprint �̃(r1 , r2), communication complexity |�| = (3 · ℓ + 2) · �,
prover time tP = O

(
=2) , verifier time tV = O(ℓ ) and soundness & = 2ℓ/|F|.

8.4 Verifiable Evaluation for Machine Learning

In this section, we introduce efficient proofs for common ML operations, following our VE
framework. We focus on Convolutional Neural Networks (CNNs) though we note that
many of these operations are also usual in image processing. We start by introducing ML
preliminaries.

8.4.1 Neural Network Preliminaries

CNNs. A Convolutional Neural Network (CNN) is a layered model where the initial
input - is transformed sequentially from layer to layer. Let - = -(1) be the array of input
values and {-(:)}!

:=1 the intermediate values between layers, as defined before. Each
-(:) ∈ F2(:)×=(:)×=(:) , where 2(:) is the number of channels at layer :, and =(:) × =(:) is the
dimension of the arrays at layer :. Namely, at each intermediate layer we have 2(:) “parallel”
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8.4. Verifiable Evaluation for Machine Learning

arrays of the same size. An example of multiple channels in an input layer is a coloured
image, which commonly has 3 channels: the red, blue, and green values of each pixel.

CNNs apply layer functions 5 (:) sequentially, such that -(:+1) = 5 (:)(-(:) ,, (:)). Usu-
ally, models interleave linear layers, such as convolutional layers and fully connected
layers, and nonlinear layers such as ReLU and Pooling. At some of these layers, including
convolutional layers, we have parameters, (:) (aka weights). For convolutional layers,
these are 2(:) × 2(:+1) matrices of size <(:) ×<(:). We denote each of these matrices as, (:)�,�

where � ∈ [2(:)] and � ∈ [2(:+1)].

Convolution. The equation of a plain 2D convolution2 in a CNN for a given output
channel � is

-
(:+1)
� [D, E] =

2(:)∑
�=1

<(:)∑
8 , 9=1

-
(:)
� [D + 8 , E + 9] ·, (:)�,�[8 , 9]. (8.4)

If no padding and strides (i.e. “jumps” in the convolution) are applied, the output matrix
-
(:+1)
� is a squarematrix of size =(:+1)×=(:+1)where =(:+1) = =(:)−<(:)+1. It is very common

in practice to apply a zero or mirror padding such that =(:) = =(:+1). Convolutions can be
carried out via (naive) dot products, via Fast Fourier Transforms (FFTs), via polynomial
multiplication, or via matrix multiplication3.

A related common operation is transposed convolution, which is an upsampling operation
that increases the size of the output with respect to the input. We refer to [DV16] for a
good introduction to convolution arithmetic.

Quantisation. Generally, CNNs need to be quantised to be embedded in proof systems,
since these require that values belong to some finite field. Quantisation is actually used
beyond verification, as typical models reach a similar accuracy on short integers (such
as 8-bit). A usual quantization scheme is [JKC+18], which, as shown in zkCNN [LXZ21],
can be integrated into large fields easily. A possible avenue for building verifiable CNNs
without quantisation consists of using proof systems with native ring arithmetic such as
[CCKP19, Sor22].

8.4.2 Our VE for Convolution

In this sectionwe present a novel approach to proving convolutions efficiently by exploiting
the symmetrical structure of a convolution operation. We write convolutions as matrix
multiplications, seeking a more convenient form than the commonly used Toeplitz or
circulant matrices (see [Uni] for further details).

Rewriting convolution. We observe that it is possible to re-write a convolution operation
in the following compact form, where we specify a convolution of a 3 × 3 input - by a
2 × 2 kernel, .
2 Note that 1D, 2D and 3D convolutions are equivalent in practice if the arrays are arranged adequately.
3 It may seem that FFTs are best-performing, but in some practical cases matrix multiplication is actually
preferred [CWV+14].
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
G1 G2 G4 G5

G2 G3 G5 G6

G4 G5 G7 G8

G5 G6 G8 G9



F1

F2

F3

F4


=


F1G1 + F2G2 + F3G4 + F4G5

F1G2 + F2G3 + F3G5 + F4G6

F1G4 + F2G5 + F3G7 + F4G8

F1G5 + F2G6 + F3G8 + F4G9


(8.5)

The example is easily extended to an =G ×=G input and <×< kernel. The matrix on the
left-hand side has dimensions4 (=−<+1)2×<2. More generically, this is the dimension of
the flattened output times the dimension of the flattened weight matrix, which is =2

H × <2

for a convolutional layer that has an output of size =H × =H .
We can extend this approach to capture multiple channels in a convolutional neural

network. Let us recover usual CNN notation while ignoring layer indices; let -� be the
input with channel � ∈ [2], and let,�,� be the weight matrix where � ∈ [3] is the output
channel. Then, in matrix form (where -̂ , ,̂ are the transformed matrix representations
of the data and weights in the form of Equation 8.5), we have that the layer’s output . is
given by

. = [.1| · · · |.3] =
2∑

�=1
-̂� · [,̂�,1| · · · |,̂�,3]. (8.6)

Namely, for each input channel � we have the product of a (=H)2 ×<2 matrix and a <2 × 3
matrix. Each .� is a column vector of length =2

H (i.e., a flattened channel of the output of
the layer). If we apply the efficient VE for matrix multplication at this stage, we need to
prove the result of a sum of 2 matrix multiplications, where the size of the matrices is
(=H)2 × <2 and <2 × 3.

Combining all input channels. The main efficiency advantage of our approach is that it
is straightforward to extend the sumcheck equation for matrix multiplication (eq. (8.3))
to sum over the multiple channels. To do this, we can encode both -̂ and ,̂ as trivariate
polynomials given by -̂(G, H, �) B -̂�(G, H) and ,̂(G, H, �) B ,̂�(G, H) for every � ∈ [2].
Then, we obtain the following sumcheck equation over x1 ,x2

.̃(y1 , y2) =
∑
(x1 ,x2)∈

{0,1}2dlog<e+dlog 2e

-̃(y1 ,x1 ,x2) · ,̃(x1 , y2 ,x2). (8.7)

Proposition 8.12. Let VEconv be the VE scheme for two-dimensional convolution that is ob-
tained by running the multivariate sumcheck protocol in Figure 8.4 on Equation 8.7. Then,
VEconv is parametrized by two input fingerprints (one for -̂ and one for ,̂), one output fin-
gerprint (for .), communication complexity |�| = (3 · (2dlog<e + dlog 2e) + 2) · �, prover time
tP = O

(
2(=2

H<
2 + <23)

)
, verifier time tV = O

(
log(2<2)

)
, and soundness & = 2 · (2dlog<e +

dlog 2e)/|F|.

Intuitively, the asymptotic benefit of our approach compared to previous work is
essentially given by expressing the input channels in columns in eq. (8.6), avoiding the
overhead of padding the kernels to the input size.
4 In this explanation, we are ignoring padding and stride parameters.
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We also note that it is straightforward to extend equation 8.5 to support arbitrary
padding or stride settings by modifying the reshaped input -̂, as done in our implementa-
tion. An advantage of our method is that the output . does not need to be reshaped after
the VE is applied.

Transpose Convolution

The transpose convolution operation can be re-written as in Equation 8.5. For an example,
let < = =G = 2 over a single input channel -(:)� . A basic upscaling transposed convolution
yields =H = 3 as below.



0 0 0 G1

0 0 G1 G2

0 0 G2 0
0 G1 0 G3

G1 G2 G3 G4

G2 0 G4 0
0 G3 0 0
G3 G4 0 0
G4 0 0 0




F1

F2

F3

F4


=



G1F4

G1F3 + G2F4

G2F3

G1F2 + G3F4∑4
8=1 G8F8

G2F1 + G4F3

G3F2

G3F1 + G4F2

G4F1



(8.8)

For arbitrary input channels, the output will be a =2
H × 3 matrix. As before, we need

to compute the sum over all input channels � ∈ [2], which can be done by extending the
sumcheck as in Equation 8.7. This yields a prover time of tP = O

(
2(=2

H<
2 + <23)

)
and a

verifier time of tV = O
(
log(2<2)

)
, exactly as for convolutions.

8.4.3 VEs for Other Neural Network Layers

Neural networks, and in general many data processing algorithms, incorporate several
(generally simple) steps beyond convolution. We succinctly describe efficient ways of
constructing VEs for the most usual operations.

Layer reshaping and pooling. For any sequence of operations that can be expressed
without any multiplication gate (such as padding, rotation, compression, averaging, or
any input rearrangement –e.g., the pre-processing required for the input of VEconv), one
can encode the desired pattern in a wiring predicate %(x, y) and apply the multilinear
sumcheck VESC as follows. For an input layer - and output layer ., let %(x, y) = C if the
value C · -(x) is added to .(y). Then, VESC can be applied over .(y) = ∑

G∈{0,1}ℓ %(x, y) ·
-(x). Note that %̃ is sparse for most operations (except for weighted sums of many input
values).

The predicate % natively supports average pooling. For max pooling, we recall the
approach using auxiliary bit decompositions by zkCNN [LXZ21], that can be expressed as
a VE. We also note that the described VE for reshaping can be easily used in combination
with a many-to-one VE.
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Normalization and linear transformations. Point-wise normalization, and in general
input re-scaling operations that can be expressed as linear transformations of the form
G ↦→ 
G + �, where 
, � ∈ F, can be verified via a linear shift without any prover work.
Indeed, multilinear fingerprints satisfy that given -,. ∈ F= such that .(x) = 
 · -(x) + �

for all x ∈ {0, 1}ℓ , then 2. = .̃(r) = 
 · -̃(r) + �.

Activation functions. Due to their non-linearity, the verification of activation layers is
particularly challenging and essentially reduces to two possibilities:

• DedicatedVEswith additional input. For instance, zkCNN [LXZ21] introduces a protocol
for ReLU that requires additional bit decomposition, and can be easily seen as a VE.

• Approximate activation functions via polynomials, as is usual in the privacy-preserving
ML literature. Quadratic polynomials may already offer good approximations [ASA20].
For this approach, one can construct a VE that evaluates quadratic polynomials via the
following multilinear sumcheck (which follows from a GKR-like encoding):

.̃(y) =
∑

x1 ,x2∈{0,1}ℓ
�̃(x1 ,x2 , y) · -̃(x1) · -̃(x2)

For a degree 3 polynomial, it is possible to use a binary tree of multiplications, such that
prover time, verifier time, and communication complexity scale with log 3.

An alternative approach is using efficient lookup arguments [ZBK+22, PK22, ZGK+22,
EFG22], where one can benefit from storing all values of the activation function (for
quantised inputs) in a lookup table. We leave the investigation of lookups in our VE
framework as interesting future work.

8.4.4 VE-based Proof System for Neural Networks

To construct a dedicated proof system for neural networks, we build a large VE scheme
(denoted by VENN), composed by several ”gadget” VEk for each of the layers of the network.
Then, we use a multilinear polynomial commitment scheme to build a commit-and-prove
AoK that achieves succinctness and efficient verification, following the blueprint of Propo-
sition 8.5.

Following previous notation, let -(:) be the input and 5 (:) the function at layer :. We
consider two general kinds of layers:

• Layers 5 (:)(-(:)) that apply an input transformation without additional parameters.
For such 5 (:) we consider VEk that take output fingerprints c(:+1)

-
(on randomness

r
(:+1)
-

) and produce input fingerprints c
(:)
-

(on randomness r
(:)
-

) and a (possibly
empty) vector of fingerprints c(:)

%
(on randomness r(:+1)

%
) to an auxiliary predicate %

(see below).

• Layers 5 (:)(-(:) ,, (:)) that require additional parameters, not necessarily known
to the verifier. For these functions, we consider VEk that take output fingerprints
(c(:+1)
-

, r
(:+1)
-
) and produce input fingerprints (c(:)

-
, c
(:)
,
, c
(:)
%
, r
(:)
-
, r
(:)
,
, r
(:)
%
).
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Additionally, we require VEk to take as many output fingerprints to -(:+1) as input
fingerprints produced by VEk+1, such that they are compatible. Note, we can always
achieve compatibility as one can reduce input fingerprints by applying VEm-1 (Proposition
8.11).

The predicates %(:) englobe any additional predicate that expresses the circuit at each
layer, such as the wiring predicates in Equation (8.1) or additional auxiliary input as in
[LXZ21]. For both %(:) and, (:), we define,(k,x) B , (:)(x) and %(k,x) B %(:)(x) via
interpolation as

)(x: ,x) =
!−1∑
:=0

�(x: , :) · )(:)(x) (8.9)

where ) ∈ {-,,} and �(x: , :) is the indicator function on dlog !e variables. Without
loss of generality, we pad every )(:) to have the same number of variables. For concrete
implementations, it is possible to optimize the padding.

We describe VENN and its compiled AoKΠNN in Figure 8.5. Soundness of VENN follows
by Proposition 8.5 and the soundness of VEk and VEm-1. ΠNN is an instantiation of the
compiler of Section 8.2.3 and Proposition 8.7. By expressing the model parameters and
predicates as single polynomials, it is possible to obtain, via many-to-one reductions, a
single input fingerprint for each of - B -(0),, , and %. These fingerprints are verified in
ΠNN.V by three polynomial commitment opening proofs.

Proposition 8.13. The protocol VENN is a VE scheme for a neural network architecture �NN,% ,
parameterized by 1 output fingerprint (of y), and 3 input fingerprints (of -(0),, , and %). Commu-
nication complexity, prover time, verifier time, and soundness result from the sum of the respective
parameters of each VEk and VEm-1 on Figure 8.5.

Besides, ΠNN is an argument of knowledge for the relation

ℛNN = {(com- , com, , com% , y;-,,, %, >- , >, , >%) :

�NN,%(-,,) = y ∧ Com.Ver(ck, com) , ), >)), ∀) ∈ {-,,, %}} .

Finally, we remark that our modular approach allows verifying pre- or post-processing
operations in addition to the model, such as an aggregation phase. In this case, one can
extend VENN and compose it with additional VE schemes for these operations.

8.4.5 Proof Batching

Our techniques are amenable to efficient batching where many evaluations .8 = �(-8 ,,)
for 8 = 1, . . . , # are verified in a single step. For VE schemes that rely on the multilinear
sumcheck protocol from Figure 8.4, including the convolution VE introduced in this section,
it is possible to reduce the verification time and communication complexity from linear to
constant in the number of instances # .

Let -(i,x) ∈ F[-1 , . . . -log#+ℓG ] be defined by -(i,x) B -8(x), and let .(i, y) be
defined analogously following equation (8.9). Then, one can run the protocol in Figure 8.4
over.(r8 , rH)where r8 ∈ Flog# and rH ∈ FℓH . For instance, the sumcheck on the convolution
VE (equation (8.7)) can be written as
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VENN.P(2H , AH , �, (-,,, %)):

• 2
(!)
-
← 2H , A(!)- ← AH

• for : = ! − 1, . . . , 0 :

• Run (c(:)
-
, c
(:)
,
, c
(:)
%
, r
(:)
-
, r
(:)
,
, r
(:)
%
) ← VEk.P

(
c
(:+1)
-

, r
(:+1)
-

, �(:) , (-(:) ,, (:) , %(:))
)

• for ) ∈ {,, %} :

• Run (2) , A)) ← VEm-1.P
(
c
(0)
)
, . . . , c

(!−1)
)

, r
(0)
)
, . . . , r

(!−1)
)

, )
)

• Run (2- , A-) ← VEm-1.P
(
c
(0)
-
, r
(0)
-
, -(0)

)
• return (2- , 2, , 2% , A- , A, , A%)

ΠNN.P((crs, crs′), (com- , com, , com% , y;-,,, %, >- , >, , >%)):

• for ) ∈ {,, %} : �1,) ← AoKCom.Prove(crs′, com) , (), >)))
• Send �1 ← (�1,- ,�1,, ,�1,%)
• Get AH ←$DY from V

• 2H ← H(y, AH)
• Run (2- , 2, , 2% , A- , A, , A%) ← VENN.P(2H , AH , �, (-,,, %)).
• for ) ∈ {,, %} : �) ← AoKH.Prove(crs, (2) , com)), (), >)))
• Send (�- ,�, ,�%) to V

ΠNN.V(ck, (com- , com, , com% , y)):

• Get (�1,- ,�1,, ,�1,%)
• Send AH ←$DY and compute 2H ← H(y, AH)
• A) ←$DT for ) ∈ {-,,, %}
• Run (2- , 2, , 2% , 10) ← VENN.V(2H , AH , �, A- , A, , A%)
• Get (�- ,�, ,�%)
• for ) ∈ {-,,, %} 1) ← AoKCom.Ver(crs′, com) ,�1,))
∧ AoKH.Ver(crs, (com) , 2) , A)),�)).

• return 10 ∧ 1- ∧ 1, ∧ 1)
Figure 8.5: Modular construction of VENN and compilation to an interactive argument of knowledge ΠNN.
The verifier VENN.V is omitted as it simply runs VEk.V sequentially.
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.̃(i, y1 , y2) =
∑
(x1 ,x2)∈

{0,1}2dlog<e+dlog 2e

-̃(i, y1 ,x1 ,x2) · ,̃(x1 , y2 ,x2). (8.10)

The resulting VE increases the prover time by a factor of dlog#e andmaintains the same
soundness, communication complexity and verifier time as their single-input counterpart.

8.4.6 Verifiable Recurrent Neural Networks

As an additional application of our modular framework, we show how to construct a
protocol for the verification of recurrent neural network (RNN) predictions, a problem
that has not been addressed efficiently in the literature. RNNs are a type of neural network
designed to process sequential data such as time series or natural language text. Unlike
feedforward neural networks, which process input data in a single pass and do notmaintain
memory, RNNs have a loop that allows information to be passed from one time step to the
next, following a cyclic computation graph.

Let ) be the length of the longest cycle in the graph described by a RNN of ! layers.
For example, ) = 1 in the RNN in Figure 8.6, as the only cycle is a self-loop. We construct
a VE that verifies the computation of ( predictions (.(1) , . . . , .(()) from (streaming) inputs
(-(1)0 , . . . , -

(()
0 ) as follows.

• The prover computes the predictions and stores all intermediate values -(8)
:

for 8 =
0, . . . , (. Then, it ”unrolls” the intermediate computations of the RNN as in Figure
8.7. The resulting computation trace is a circuit of depth � = !+( ·) with an evident
layer structure.

• The prover embeds each layer of the computation trace in a multilinear polynomial
/:(j ,x) B /

(j)
:
(x) as in equation (8.9), and defines,: , %: accordingly. In total, one

obtains � multilinear polynomials, structured as the layers in Figure 8.7.

• The VE proceeds similarly to the VENN of Figure 8.5. Instead of obtaining fingerprints
for each -(8)

:
via separate VEs, one can work directly with the (batched) /: as fol-

lows. Let 6:,:+1 be the product of multilinear polynomials that relates /:+1(i, y) and
/:(j ,x). 6:,:+1 contains factors of /: ,,: , %: , subsequently defined over variables
(j ,x). Then, we have

/:+1(i, y) =
∑
x,j

6:,:+1(/: ,,: , %:)(i, j ,x, y).

Finally, by summing over all layers that are input to /:+1 and polynomials 6:′,:+1 for
:′ ≤ :, we can verify a fingerprint of /:+1 in a single sumcheck. The evaluation of
6:,:+1 yields fingerprints of /: ,,: , %: that can be handled as in VENN.

The resulting VE scheme has communication complexity and verifier time tV = |�| =
$(� · log ( · ℓmax), where ℓmax = max!−1

:=0dlog =:e and =: is the size of -̃(·)
:
. Even if the proof

size scales linearly in the length of the stream (, we believe that our approach may present
good concrete performance for small streams, in particular due to the batching technique.
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Figure 8.6: Illustration of a RNN with a loop at layer -1.

Figure 8.7: Unrolled computation trace of a sequence of inputs -(1)0 , . . . , -
(()
0 in the RNN in Figure 8.6.

8.4.7 VEs for Image Processing

The techniques developed in these sections find a direct application in the verification of
image processing operations. For instance, convolution is used in applications such as
edge detection (such as using Sobel or Canny kernels), image blurring (Gaussian blur),
and feature extraction. Below we provide a brief description how to construct a VE for
some common applications.

• Operations that require geometric modifications or rearrangements of the original pic-
ture, such as cropping, rotation, mirroring, padding, or partial censoring (i.e. removal
or replacement of sectors of an image) can be verified following Section 8.4.3.

• For convolution-related operations, one can directly apply our VECNN with the desired
parameters.

• Multiple transformations can be merged in a single sumcheck by merging wiring predi-
cates. For instance, rotation + cropping + input reshaping (1) and a posterior convolu-
tional filtering (2) can be verified with only two sumchecks.

For images encoded in RGB or other multi-channel format, we can apply batching
techniques for the channels as shown in equation (8.10). If negative values appear in
convolution kernels, linear shifts need to be applied to avoid wrapping of field elements.
We compare the performance of our approach to ZK-IMG [KHSS22] and PhotoProof [NT16]
in Section 8.5.3.
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8.5 Evaluation

In this section we discuss the performance of our solution and compare it to previous work.
We focus the evaluation on our VEconv for convolution operations introduced in Section
8.4.2, as this is the most novel proof gadget compared to previous work.

8.5.1 Theoretical comparison

Recalling previous notation, let =G × =G be the input size, =H × =H the output size, < × <
the kernel size, and 2, 3 the number of input and output channels, respectively. We also
write = = max{=G , =H}. In Table 8.1, we compare the the prover and verifier running times
as well as the proof size of our convolution VE to the FFT-based approach from zkCNN
[LXZ21].

VEconv zkCNN [LXZ21]

Prover tP O
(
<22(=2

H + 3)
)

O
(
=223

)
Verifier tV O

(
log(=2

H2)
)

O
(
log2(=223)

)
Proof size |�| (6dlog<e + 3dlog 2e + 2) · � O

(
log2(=223)

)
Table 8.1: Comparison between VEconv and the convolution proofs in zkCNN.

We observe that our approach is always more efficient in communication complexity
and verification time, while our prover is more efficient asymptotically when <2 ≤ 3,
which is often the case in practice (e.g., VGG16 presents < = 3 and 3 grows up to 512),
and its running time is independent of 3 when the term =2

H<
2 dominates in the sum.

Additionally, in zkCNN, they need to either compute the FFT matrix or outsource this to
the prover, thereby increasing proof size. We avoid all the complications of the multiple
sumchecks in our direct approach. We also note that their FFT-sumcheck-based protocol
can be easily expressed as a VE.

We note that, in many typical ML models, = � <, 2 in early layers, and 2 � = ≈ < in
“deep” intermediate layers. Hence, even if our approach does not outperform the prover
time of the FFT-based polynomial multiplication approach in all parameter regimes, it will
improve it for many parameter sets in intermediate layers. Based on the characteristics of
the layer, one could select the most efficient VE for convolution.

8.5.2 Experimental evaluation

We implemented VEconv in Rust.5 We use the arkworks library [con22] for implementing
field arithmetic over the 256-bit prime field from the bls12-381 curve, the same field used
in [LXZ21]. We also utilize several components of the arkworks sumcheck library that
implements the doubly efficient protocol in [XZZ+19].

We carry out different benchmarks in a virtual machine running Debian GNU/Linux
with 8 cores Xeon-Gold-6154 at 3GHz and with 98 GB of RAM. Our implementation can be
5 Our code is available at https://github.com/imdea-software/MSCProof
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Figure 8.8: Prover time for varying number of channels 2, 3 and fixed = = 64 and < = 4.

run using the natively supported parallelisation in arkworks, but we run our experiments
on a single thread to facilitate comparison to previous work. All timings correspond to the
average over 10 executions.

Single-channel convolution. Our first set of benchmarks run a single convolution with
different input and kernel sizes. For small kernels < = 4, our VE prover requires 1.3 ms
for a = = 32 input, and 98 ms for = = 256. In this parameter regime, our prover time is
5× faster than the FFT prover (and also the naive prover) in [LXZ21]. Our prover also
outperforms [LKKO20] by two orders of magnitude. For large convolution kernels, the
prover in zkCNN remains faster.

Verification is very fast and scales logarithmically on the kernel size, as expected.
Verifying a moderate-size convolution such as = = 256 (in fact, for any =) and < = 8 takes
0.157 ms, whereas large kernels < = 128 require 0.362 ms.

Multiple channels. Our approach is optimized for multiple convolution channels, as
we show in Figure 8.8. We display our results for a small fixed kernel < = 4 and input
= = 64, for 2 up to 64 and 3 = 1, 32, 128. As seen in the chart, the prover time is essentially
constant in 3 since =2 ·<2 dominates the sum. The verifier time is also very small, ranging
from 0.07 ms for 2 = 1 to 0.210 ms for 2 = 64, and also constant in 3.

We do not have concrete running times for multiple channels in zkCNN, but we expect
their prover time to increase linearly on 2 · C.

Communication complexity. We also provide concrete figures of the communication
complexity (equivalently, the proof size of the non-interactive protocol), which is deter-
ministic for VEconv (Proposition 8.12). For the single-channel experiments, the proof size
amounts to 0.64 KB for < = 8, and 1.4 KB for < = 128, for any input size. This is a 8×
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improvement over zkCNN, which ranges from 5.6 KB to 8.4 KB for the same experiments.
For the multi-channel setting in Figure 8.8, the instance = = 64, < = 8 and 2 = 32 yields a
proof size of 1.12 KB for any 3.

Image Processing. We benchmark a convolution proof of a 8× 8 kernel (such as blurring)
with a RGB image (720 × 480) with the goal of comparing to ZK-IMG [KHSS22], which
already outperforms [NT16] by several orders of magnitude. The comparison is only
approximate as their benchmarks are run on more powerful hardware than ours, and
image sizes are not identical.

In this regime, VEconv takes 3.3 s of proving time, 0.12 ms of verification time and yields
a proof size of 0.64 KB. In ZK-IMG, a 3× larger 1280 × 720 convolution input involves 78 s
of proving (ignoring key generation), 8.12 ms of verification, and 11 KB proof size (a 20×
increase).

For a 128 × 128 input, they report 2.7 s of proving time and 5.3 ms of verification on
standard hardware. For the same size and a 8 × 8 kernel, our prover takes 110 ms (25×
faster) and our verifier 0.117 ms.

Nevertheless, ZK-IMG implements a complete proof system, while our approach
requires an additional polynomial commitment. We expect other simple transformations
(cropping, padding, partial censoring...) to present similar running times.

Pre-Processing in VEconv. As discussed in Sections 8.4.2 and 8.4.3, a pre-processing
reshaping step, which can often be embedded into other steps such as activation layers, is
required if VEconv is used to prove a standalone convolution. In that case, the sumcheck in
Section 8.4.3 needs to be executed after VEconv. We note that this step induces a minimal
overhead as (1) the sumcheck involves strictly less variables and rounds than VEconv, and
(2) the prover already has the fingerprints to the reshaped input. We empirically evaluate
this overhead in the VGG11 benchmark in Figure 8.9 as we discuss below.

Polynomial Commitment Overhead. A polynomial commitment is used in the AoK
described in Proposition 8.13 but not at the VE level. The overhead induced by the PC
depends on the chosen scheme and affects the efficiency of our solution and prior work’s
[LXZ21] in the same way. In the case of zkCNN, sumchecks take roughly 2/3 of the total
prover time, whereas PCs take the remaining 1/3 (see [LXZ21], Table 1). Our improve-
ments in the information-theoretic protocol significantly reduce the fraction taken by the
sumchecks.

For completeness, we benchmark the multilinear KZG from HyperPlonk [CBBZ23]
together with our VEconv. For a single-channel convolution of = = 256, < = 4, a PC opening
takes 400 ms, whereas the VE sumcheck prover takes 98 ms. The commit operation takes
191 ms. We remark that the PC opening cost gets further amortized when more VEs
are composed sequentially. In general, the deeper the model is, the more significant the
sumcheck overhead becomes.
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Figure 8.9: Prover time for the convolution layers of a VGG11 network. The network presents 2 × =2

convolution layers as indicated in the x axis. All kernels are of size 3 × 3.

CNN Evaluation We also benchmark the proof generation for the convolution layers of a
VGG11 neural network (without activation and fully connected layers), that we summarize
in Figure 8.9. As shown in the figure, the overhead of the polynomial commitment gets
amortized across multiple layers. The figure also shows the small overhead from the
reshape sumcheck compared to the convolution sumcheck. Finally, the empirical prover
time for an increasing number of channels (larger 2, 3) and decreasing inputs (smaller =2)
remains similar, in agreement with the claimed prover complexity.

8.5.3 Discussion

Our protocols achieve, overall, faster prover times, reduced communication and faster
verification times than existing solutions. As in other works [LKKO20, KHSS22, LXZ21],
we found memory usage to be the main bottleneck, the reason being the dynamic pro-
gramming technique used by the prover to compute the multilinear extensions. Yet, our
approach allows for clearing the memory after every sequential step, as opposed to so-
lutions such as [LKKO20] or [KHSS22] (built upon general-purpose proof systems). A
solution towards improving memory bottlenecks is to trade memory usage for proving
time by applying streaming algorithms for multilinear extensions [CTY11], which is an
interesting direction for future work.
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Conclusions and Future Work

This thesis presented several advances on succinct proof systems. In the first part (Chap-
ters 4 to 7), we covered foundational aspects of succinct arguments, centred around the
question of building expressive succinct arguments from standard assumptions. In the second
part (Chapter 8), we adopted a more practical angle, focusing on modularity, composabil-
ity and concrete efficiency for real-world applications. This final section aims to provide an
interpretation of our results in a broader context, discuss their implications, and point out
future work directions.

Functional Commitments. In Chapter 4, we introduced the first constructions of func-
tional commitments for circuits based on falsifiable assumptions. Our construction pro-
vided a blueprint for building expressive FCs from chainable functional commitments for
only quadratic equations, which we later constructed from both lattices and pairings. In
hindsight, themain technical challenge that our construction overcomes is the evaluation of
an unbounded number ofmultiplication gates, which is rooted in the concept of chainability.
Both our lattice-based and our pairing-based scheme achieve chainability by committing
to the circuit wires level-by-level and proving quadratic relations between them. In con-
trast, in (lattice-based) homomorphic computation approaches [dCP23, WW23b, WW23a]
the noise of evaluated commitments grows significantly with each multiplication gate,
enforcing an a-priori bound on the circuit depth at setup time.

Following the publication of our results, notable progress has been made in the area.
Most prominently, [WW24b] refined our chainability approach and, by letting the prover
commit to the entire computation trace of a circuit and embedding a projective space into
the commitment key, achieved constant-size functional openings (i.e. O(�)). Unfortunately,
the size of the public parameters in their scheme becomes very large (quintic in the circuit
size). Then, in Chapter 5 we introduced new techniques that enabled more compact public
parameters than in Chapter 4, reducing their size from quintic to cubic in the circuit width.
We see no major reason to believe that this effort cannot be pushed further in algebraic
pairing-based solutions, e.g. aiming for public parameters that are quadratic in the circuit
width, which we believe is an interesting open question.

An interesting observation is that the constructions in Chapter 4, Chapter 5 and
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[WW24b] all seem to present a parameter-proof size trade-off. This is, for public pa-
rameters ck and a functional proof �, it holds that |ck| · |�| ≥ � · B for a circuit of size B. For
example, in [WW24b] |ck| = O

(
�B5) and |�| = O(1), whereas in Chapter 5 |ck| = O

(
�F5)

and |�| = O
(
�32) for a circuit of depth 3 andwidthF (note that B ≤ 3·F). Thus, building an

algebraic pairing-based scheme (or showing impossibility) in which |ck| · |�| = poly(�) · >(B)
is also a challenging open problem.

In general, these research directions attempt to bring functional commitments closer to
the practical efficiency of SNARGs, which is a problem that is well-motivated in theory
but also to some extent in practice. For instance, the use of random oracles in certain
SNARG families recently faced a significant setback due to a new attack on the Fiat-Shamir
transformation [KRS25]. Functional commitments offer an alternative recipe for building
succinct arguments where issues with idealized models and extractability assumptions
are minimized by design.

As a final remark, while some of our constructions rely on falsifiable but non-standard
assumptions, there is a strong historical precedent for subsequently basing such results on
standard assumptions. Notable examples include the progression of BARGs from @-type
assumptions in [KPY19] to constructions based on LWE in [CJJ22], and the development of
functional commitments themselves, from the HiKer assumption in [BCFL23] to MDDH
in [WW24b]. Hence, we see falsifiable assumptions as a strong stepping stone towards
achieving realizations from standard assumptions.

Batch Arguments. In Chapter 6, we presented the first algebraic construction of a batch
argument for NP that achieves circuit-succinctness from standard pairing-based assump-
tions. Besides providing a formal connection between functional commitments and BARGs,
our BARG construction is the first black-box construction from another cryptographic prim-
itive with falsifiable security notions and standard-model realizations. We believe this
connection enhances the understanding of BARGs and could result in novel efficient real-
izations. One notable open problem is to realize algebraic BARGs from lattice assumptions,
which seems plausible since there exist several algebraic lattice-based functional commit-
ments [ACL+22, WW23b, dCP23, BCFL23, WW23a]. Unfortunately, none of them satisfies
the properties required by our FC-to-BARG compiler and enhancing them does not seem
straightforward. Nevertheless, we believe that our approach provides valuable insights
and a candidate construction blueprint towards this goal.

The main impediment towards making progress in this area, which is in general
an important limitation of lattice-based succinct proofs, is that any meaningful form of
extractability (such as somewhere extractability) seems to be hard to get without relying
on random oracles (in algebraic schemes). While constructions of somewhere extractable
commitments from lattices exist [HW15, CJJ21], they rely on homomorphic encryption
techniques and their structure does not seem to support augmenting themwith an algebraic
proof system. Any significant advance in this direction, such as obtaining new algebraic
constructions of somewhere extractable commitments from SIS, BASIS or :-'-ISIS, would
be an important step towards practically efficient lattice-based BARGs.
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Another intriguing research direction is to build concretely efficient BARGs for specific
languages of interest, such as for linear relations and norm checks, for R1CS instances,
or for pairing equations. As an example, the former would provide a mechanism for
aggregating hash-and-sign lattice-based signatures [GPV08] such as Falcon [FHK+20]
natively. Separately, it would be interesting to study whether BARGs for more expressive
relations, such as for monotone policies [BBK+23, NWW24], can also be instantiated in a
fully algebraic manner.

Homomorphic Signatures. Our linearly-homomorphic functional commitments for cir-
cuits in Chapter 4 and Chapter 5 resulted in algebraic instantiations of homomorphic
signatures from standard assumptions that, for the first time, supported the evaluation of
arbitrary computations. Later, in Chapter 7, we presented the first fully-succinct multi-key
homomorphic signature that is secure under standard assumptions. This construction
follows a relatively simple blueprint which relies on functional commitments and BARGs,
finding a natural application for the constructions in the previous chapters. First, one
commits to all signed messages and proves the evaluation of the function using a func-
tional commitment opening. Second, one uses a BARG to (a) prove the verification of each
signature and (b) prove that the commitment is well-formed. The main technical barrier
that we overcome is the security proof itself, which has a notable technical complexity and
forced us to introduce a somewhere extractable commitment as an additional building
block.

A significant drawback of our multi-key homomporphic signature is its non-algebraic
nature, as the BARG circuit needs to encode functional commitment updates and SEC
verification operations. In practice, this translates into notable efficiency overheads. Hence,
the main open question is whether one can build a fully algebraic scheme which could
be realized efficiently. From lattice assumptions, the road ahead is obscure due to the
lack of algebraic somewhere extractable primitives as described previously. From pairing
assumptions, a natural approach may be to use structure-preserving tools for commit-
ments and signatures. Unfortunately, there exist strong impossibility results on succinctly
committing to group elements [AFG+16], so the road ahead is not much clearer. We re-
mark that follow-up work on MKHS presents a more convoluted and highly non-algebraic
construction [ACG24], so it does not seem likely that their approach could yield efficient
solutions either.

Further directions worth exploring are building MKHS (or even HS) with advanced
properties (such as supporting threshold or monotone policies on the validity of the
signatures), and improving on the best possible succinctness of our instantiation, which
yields evaluated signatures of size O

(
�2) . Towards this latter goal, we observe that using

rate-1 BARGs [PP22] does not seem to provide any advantage, as they introduce an additive
poly(�) factor in the proof size.

Concretely Efficient Proofs. In Chapter 8, we depart from realizing new primitives
and breaking asymptotic bounds and focus on building concretely efficient proofs for
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applications of interest. Our contributions are twofold. First, we present a modular frame-
work that allows one to seamlessly compose sumcheck-based proofs for both general and
domain-specific relations. Second, we present and implement an efficient proof for convo-
lution operations that outperforms the state-of-the-art in both speed and succinctness. By
leveraging sequential composition at the information-theoretic level, our proof generation
algorithms achieve not only low computation time but also high memory efficiency. Hence,
our framework enables efficient verifiable data pipelines for applications that require large
amounts of data. Among these, we highlight applications in verifiable neural network
inference and verifiable image processing.

Both application domains have witnessed significant research activity in recent years.
Regarding verifiable machine learning, the increasing prevalence of AI in decision-making
processes has increased the need for ensuring fairness, both in training [GGJ+23, APKP24]
and in inference [SLZ24]. Notably, zero-knowledge proofs applied to machine learning
are no longer an academic quest exclusively, but have also been deployed in commercial
products, in some cases following our modular sumcheck-based approach [Lag25].

Simultaneously, the surge of generative AI has strongly motivated the problem of
certifying the genuine manipulation of images and videos. The applications of verifiable
media processing are wide and include journalism, law enforcement, fake news detection,
and even art or photography contests. Given the scale of the problem, cryptography seems
to be the only viable solution, as it is not feasible to have a human certify every image or
video. Recent works are designing verifiable image processing pipelines that improve our
solutions in different angles [DEH25, MVVZ24, DCB25].

The construction of efficient proof systems is not necessarily incompatible with the
directions taken in first part of the thesis. As an example, a recent trend for building
efficient proof systems for large computations is to use proof recursion [Val08], generally
through folding schemes [KST22]. As part of the recursion step, one of the most expensive
operations is proving hash function evaluations, which instantiate random oracles in
practice. To circumvent this, a yet unexplored pathway is to employ proof systems without
random oracles, such as functional commitments and BARGs. Whether this approach can
yield competitive instantiations for recursive proofs is an interesting open question.

Final Thoughts. To conclude, wewould like to emphasize the importance of cryptanalysis
and security research on proof systems developed for practical deployment, such as those
in Chapter 8. The proof systems field is fast-moving and highly complex, yet there is
a relatively short delay between the surge of academic solutions and their commercial
adoption. This raises several concerns in practice.

Froma cryptanalytical standpoint, the recent attacks on the Fiat-Shamir transform [KRS25]
actually show that our sumcheck-based proofs may be vulnerable due to our use of random
oracles. Even if concrete attacks do not seem feasible, such results reflect the difficulty
of building practical proof systems that stand the test of time. Similarly, it highlights the
importance of the fundamental research done in the first part of the thesis, which seeks
solid security foundations for these primitives.
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In parallel, there is a long road ahead in studying the security of proof systems at the
level of implementation and protocol design. Despite securing billions of euros in digital
assets, current implementations often lack rigorous scrutiny. Standardization efforts are
scarce as companies tend to develop different proof systems, and there are few established
guidelines for developers. These concerns are not limited to blockchains but extend to
protocols in the digital identity and authentication domain, which often rely on tailor-
made zero knowledge proofs. Governments across the world are actively developing these
protocols, yet they often do so with poor scientific rigour and suboptimal security choices.

As a general stance, the field would benefit greatly from increased interaction between
cryptographers and system designers, or by havingmore cryptographers taking inspiration
from real-world problems. While proof systems do have potential to ensure trust, the
cryptography for a verifiable world must still confront significant challenges to secure trust
in its own foundations.
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