Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

D. Balbás^{1,2}, D. Fiore¹, M. González-Vasco³, D. Robissout¹, C. Soriente⁴ 28th November 2023

¹IMDEA Software Institute, Madrid, Spain ²Universidad Politécnica de Madrid, Spain ³Universidad Carlos III de Madrid, Spain ⁴NEC Laboratories Europe, Madrid, Spain

ACM CCS 2023, Copenhagen, Denmark

Towards proving larger models, we require:

- Efficient Verification
- Efficient Proof Generation: $\tilde{O}(n)$ time, usually achieved by *sumcheck-based proofs*. Low memory usage.
- Privacy for model parameters.

Towards proving larger models, we require:

- Efficient Verification
- Efficient Proof Generation: $\tilde{O}(n)$ time, usually achieved by *sumcheck-based proofs*. Low memory usage.
- Privacy for model parameters.

General-purpose proof systems (e.g. SNARKs) not great for *data intensive computations*.

Towards proving larger models, we require:

- Efficient Verification
- Efficient Proof Generation: $\tilde{O}(n)$ time, usually achieved by *sumcheck-based proofs*. Low memory usage.
- Privacy for model parameters.

General-purpose proof systems (e.g. SNARKs) not great for *data intensive computations*.

Special-purpose proofs (e.g. vCNN, zkCNN, zkIMG) better but lack *composability/reusability*.

• Framework for composing sumcheck-based proofs at an information-theoretic level.

- Framework for composing sumcheck-based proofs at an information-theoretic level.
- Better efficiency for combined special-purpose protocols.

- Framework for composing sumcheck-based proofs at an information-theoretic level.
- Better efficiency for **combined special-purpose protocols**.
- Efficient proofs for multi-channel **convolution**.

- Framework for composing sumcheck-based proofs at an information-theoretic level.
- Better efficiency for combined special-purpose protocols.
- Efficient proofs for multi-channel **convolution**.
- Modular, extendable Rust implementation, 5-10x faster & shorter than special-purpose proofs for ML and IP.

This work as seen by Dall-E 3

- Framework for *composing sumcheck-based proofs* at an information-theoretic level.
- Better efficiency for combined special-purpose protocols.
- Efficient *proofs for multi-channel* **convolution**.
- Modular, extendable Rust implementation, 5-10x faster & shorter than special-purpose proofs for ML and IP.

This work as seen by Dall-E 3

Our Framework

An interactive proof (IP) for the language $\mathcal{L}_{\mathcal{F}} = \{(f, x, y) : f(x) = y\}$ is a pair of algorithms $\langle \mathcal{P}, \mathcal{V} \rangle (f, x, y) \rightarrow b$ that are *complete* and *sound*.

An interactive proof (IP) for the language $\mathcal{L}_{\mathcal{F}} = \{(f, x, y) : f(x) = y\}$ is a pair of algorithms $\langle \mathcal{P}, \mathcal{V} \rangle (f, x, y) \rightarrow b$ that are *complete* and *sound*.

Fingerprint

Let $c_x \leftarrow H(x, r)$ be the **fingerprint** of x on r. H is (statistically) sound if for *any* pair $x \neq x^*$,

 $\Pr[\mathsf{H}(x,r) = \mathsf{H}(x^*,r)] = \operatorname{negl}(\lambda).$

Example: for $\mathbf{x} \in \mathbb{F}^n$, the poly. evaluation $H(\mathbf{x}, r) = x_0 + x_1 r + \cdots + x_{n-1} r^{n-1}$ over \mathbb{F} .

We can explain many efficient IPs for (f, x, y) with the following abstraction:

х

y

We can explain many efficient IPs for (f, x, y) with the following abstraction:

 $\begin{array}{|c|c|c|c|} & \langle \mathcal{P}, \mathcal{V} \rangle (f, x, y) \\ \hline \mathbf{Prover} & \mathbf{Verifier} \\ c_y \leftarrow \mathsf{H}(y, r_y) & c_y \leftarrow \mathsf{H}(y, r_y) \\ c_x, r_x & \langle \mathcal{P}_{\mathsf{VE}}(x), \mathcal{V}_{\mathsf{VE}} \rangle (f, c_y, r_y) & c_x, r_x, b \\ \hline \end{array}$

We can explain many efficient IPs for (f, x, y) with the following abstraction:

 $\begin{array}{c|c} \langle \mathcal{P}, \mathcal{V} \rangle (f, x, y) \\ \hline \mathbf{Prover} & \mathbf{Verifier} \\ c_y \leftarrow \mathsf{H}(y, r_y) & c_y \leftarrow \mathsf{H}(y, r_y) \\ c_x, r_x & \langle \underbrace{\mathcal{P}_{\mathsf{VE}}(x), \mathcal{V}_{\mathsf{VE}} \rangle (f, c_y, r_y)}_{b' \leftarrow \mathbf{I}(\mathbf{c}_x = \mathsf{H}(x, r_x)] \\ & b' \leftarrow [\mathsf{c}_x = \mathsf{H}(x, r_x)] \\ & \mathbf{return} \ b \land b' \end{array}$

We can explain many efficient IPs for (f, x, y) with the following abstraction:

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.

We can explain many efficient IPs for (f, x, y) with the following abstraction:

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.

Our Framework

We characterize VEs and provide a formalism. **VEs can be composed sequentially at the information-theoretic level!**

VEs can express many sumcheck-based proof systems:

Our Framework

We characterize VEs and provide a formalism. **VEs can be composed sequentially at the information-theoretic level!**

VEs can express many sumcheck-based proof systems:

- Matrix multiplication [Thaler13]
- GKR [GKR08, CMT12]
- Libra [XZZPS19], Virgo [ZLW+20] (and follow-ups)
- FFT-based convolution [LXZ21]
- ...

We provide a compiler from VEs to succinct cryptographic arguments. Fingerprints can be evaluated efficiently by \mathcal{V} via polynomial commitments.

Efficient Proofs for Convolution

Our Proofs for Convolution

We express convolutions between input X and kernel W as multilinear sumchecks.

Source: Christopher Melen, RNCM

Our Proofs for Convolution

Our protocol proceeds in two steps:

- 1. A *reshape* sumcheck that rearranges $X \mapsto \hat{X}$.
- 2. A *convolution* sumcheck $\hat{X} \circ W \mapsto Y$.

Built upon sumchecks for matrix multiplication [Tha13] and channel batching.

Our Proofs for Convolution

Our protocol proceeds in two steps:

- 1. A *reshape* sumcheck that rearranges $X \mapsto \hat{X}$.
- 2. A *convolution* sumcheck $\hat{X} \circ W \mapsto Y$.

Built upon sumchecks for matrix multiplication [Tha13] and channel batching.

Performance

For c input channels, d output channels,

	Ours	zkCNN [LXZ21]
Prover	$\mathcal{O}(c \cdot W \cdot (Y + d))$	$\mathcal{O}(c \cdot d \cdot X)$
Verifier	$\mathcal{O}ig(\log(c \cdot Y)ig)$	$\mathcal{O}\Big(\log^2(c \cdot d \cdot X)\Big)$
Size	$\mathcal{O}ig(\log(c \cdot Y)ig)$	$\mathcal{O}\Big(\log^2(c \cdot d \cdot X)\Big)$

Applications and Benchmarking

We extend our framework to construct efficient proof systems for:

- Convolutional Neural Networks.
- Recurrent NNs.
- Image Processing: Native linear, reshaping, and convolutional operations (filtering, blurring...).

Our convolution prover and a general CNN prover are implemented in Rust and available open-source.

• **Prover** \approx 0.1s for 256 \times 256 input and 4 \times 4 kernel. 5 \times faster than zkCNN, 100 \times faster than vCNN.

- **Prover** \approx 0.1s for 256 \times 256 input and 4 \times 4 kernel. 5 \times faster than zkCNN, 100 \times faster than vCNN.
- Verification $\approx 0.1 \text{ms.}$

- **Prover** \approx 0.1s for 256 \times 256 input and 4 \times 4 kernel. 5 \times faster than zkCNN, 100 \times faster than vCNN.
- Verification $\approx 0.1 \text{ms.}$
- Proof size $\approx 1 \text{KB}$.

 $10 \times$ shorter than zkCNN.

Sequential composition reduces memory usage. Still room for improvement.

- Theory **framework** for composition of sumcheck-based proofs.
- Efficient sumchecks for convolution.
- Efficient arguments for data-intensive applications such as ML and IP.
- Modular implementation in Rust.

- Theory **framework** for composition of sumcheck-based proofs.
- Efficient sumchecks for convolution.
- Efficient arguments for data-intensive applications such as ML and IP.
- Modular implementation in Rust.

ia.cr/2023/1342

david.balbas@imdea.org

Slides available @ davidbalbas.github.io

Additional Material

VE for Multilinear Polynomials

Let $\boldsymbol{t} = (t_1, \ldots, t_\ell)$, \mathbb{F} a finite field, and

$$x(t, y) = \prod_{i=1}^{s} x_i(t, y)$$

where each x_i is a multilinear polynomial over \mathbb{F} .

We can generalize multilinear sumcheck as a VE for the relation

$$f_{y}(\mathbf{r}_{y}) = \sum_{\mathbf{t} \in \{0,1\}^{\ell}} x(\mathbf{t}, \mathbf{r}_{y}).$$

 \mathcal{P}, \mathcal{V} start on fingerprint $c_y = f_y(\mathbf{r}_y)$. At the end, they obtain $c_x = x(\mathbf{r}_t, \mathbf{r}_y)$.

VE for Matrix Multiplication [Tha13]

Let $C = A \cdot B$ where $A, B, C \in \mathbb{F}^{n \times n}$. We can write matrix multiplication as

$$ilde{\mathcal{C}}(extbf{x}_1, extbf{x}_2) = \sum_{ extbf{y} \in \{0,1\}^\ell} ilde{\mathcal{A}}(extbf{x}_1, extbf{y}) \cdot ilde{\mathcal{B}}(extbf{y}, extbf{x}_2)$$

Where \tilde{A} encodes A as a (unique) multilinear polynomial, $\tilde{A}(\boldsymbol{i},\boldsymbol{j})=A_{i,j}$

Given $\mathbf{r}_1, \mathbf{r}_2 \in \mathbb{F}^{\ell}$, we apply our multilinear sumcheck VE on:

$$ilde{\mathcal{C}}(extbf{r}_1, extbf{r}_2) = \sum_{ extbf{y} \in \{0,1\}^\ell} ilde{\mathcal{A}}(extbf{r}_1, extbf{y}) \cdot ilde{\mathcal{B}}(extbf{y}, extbf{r}_2).$$

 \mathcal{P}, \mathcal{V} start on fingerprint $c_C = \tilde{C}(\mathbf{r}_1, \mathbf{r}_2)$. At the end, they obtain fingerprints $c_A = \tilde{A}(\mathbf{r}_1, \mathbf{r}_3)$ and $c_B = \tilde{B}(\mathbf{r}_3, \mathbf{r}_2)$.

Communication and verifier $t_V = O(\ell) = O(\log n)$, prover $O(n^2)$.

VE for Convolution

Convolution equations can be compacted as

$$\operatorname{vec}(Y) = \begin{bmatrix} w_0 x_0 + w_1 x_1 + w_3 x_3 + w_4 x_4 \\ w_0 x_1 + w_1 x_2 + w_3 x_4 + w_4 x_5 \\ w_0 x_3 + w_1 x_4 + w_3 x_6 + w_4 x_7 \\ w_0 x_4 + w_1 x_5 + w_3 x_7 + w_4 x_8 \end{bmatrix} = \begin{bmatrix} x_0 & x_1 & x_3 & x_4 \\ x_1 & x_2 & x_4 & x_5 \\ x_3 & x_4 & x_6 & x_7 \\ x_4 & x_5 & x_7 & x_8 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_3 \\ w_4 \end{bmatrix}$$

For multiple kernels and inputs (multi-channel), as usual in e.g. neural networks,

$$Y = [Y_1|\cdots|Y_d] = \sum_{\sigma=1}^c \hat{X}_{\sigma} \cdot [W_{\sigma,1}|\cdots|W_{\sigma,d}].$$

Where $\sigma \in [c]$ represents input channels, and $\tau \in [d]$ output channels.