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Proof Systems in the Wild

Towards proving larger models, we require:

• Efficient Verification

• Efficient Proof Generation: Õ(n) time, usually achieved by sumcheck-based

proofs. Low memory usage.

• Privacy for model parameters.

General-purpose proof systems (e.g. SNARKs) not great for data intensive

computations.

Special-purpose proofs (e.g. vCNN, zkCNN, zkIMG) better but lack

composability/reusability.
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This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

This work as seen by Dall·E 3

4



This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

This work as seen by Dall·E 3

4



This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

• Efficient proofs for multi-channel

convolution.

This work as seen by Dall·E 3

4



This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

• Efficient proofs for multi-channel

convolution.

• Modular, extendable Rust implementation,

5-10x faster & shorter than special-purpose

proofs for ML and IP.
This work as seen by Dall·E 3

4



This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

• Efficient proofs for multi-channel

convolution.

• Modular, extendable Rust implementation,

5-10x faster & shorter than special-purpose

proofs for ML and IP.
This work as seen by Dall·E 3

4



Our Framework



Fingerprints and Interactive Proofs

An interactive proof (IP) for the language LF = {(f , x , y) : f (x) = y} is a pair of

algorithms ⟨P ,V⟩ (f , x , y)→ b that are complete and sound.

Fingerprint

Let cx ← H(x , r) be the fingerprint of x on r .
H is (statistically) sound if for any pair x ̸= x∗,

Pr
r
[H(x , r) = H(x∗, r)] = negl(λ).

Example: for x ∈ Fn, the poly. evaluation H(x , r) = x0 + x1r + · · ·+ xn−1r
n−1 over F.
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Structure of Common IPs

We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry ) cy ← H(y , ry )

cx , rx
⟨PVE(x),VVE⟩(f , cy , ry ) cx , rx , b

b′ ← [cx = H(x , rx)]

return b ∧ b′

x

f

y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.
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We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry ) cy ← H(y , ry )

c2, r2
⟨PVE(x2),VVE⟩(f3, cy , ry ) c2, r2, b2

c1, r1 ⟨PVE(x1),VVE⟩(f2, c2, r2) c1, r1, b1
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Our Framework

We characterize VEs and provide a formalism. VEs can be composed sequentially at

the information-theoretic level!

VEs can express many sumcheck-based proof systems:

• Matrix multiplication [Thaler13]

• GKR [GKR08, CMT12]

• Libra [XZZPS19], Virgo [ZLW+20] (and follow-ups)

• FFT-based convolution [LXZ21]

• . . .

We provide a compiler from VEs to succinct cryptographic arguments. Fingerprints can

be evaluated efficiently by V via polynomial commitments.
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Efficient Proofs for Convolution



Our Proofs for Convolution

We express convolutions between input X and kernel W as multilinear sumchecks.

Source: Christopher Melen, RNCM
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Our Proofs for Convolution

Our protocol proceeds in two steps:

1. A reshape sumcheck that rearranges X 7→ X̂ .

2. A convolution sumcheck X̂ ◦W 7→ Y .

Built upon sumchecks for matrix multiplication [Tha13] and channel batching.

Performance

For c input channels, d output channels,

Ours zkCNN [LXZ21]

Prover O
(
c ·|W | · (|Y |+ d)

)
O
(
c · d ·|X |

)
Verifier O

(
log(c ·|Y |)

)
O
(
log2(c · d ·|X |)

)
Size O

(
log(c ·|Y |)

)
O
(
log2(c · d ·|X |)

)
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Applications and Benchmarking



Applications

We extend our framework to construct efficient proof systems for:

• Convolutional Neural Networks.

• Recurrent NNs.

• Image Processing: Native linear, reshaping, and convolutional operations

(filtering, blurring...).

Our convolution prover and a general CNN prover are implemented in Rust and available

open-source.

10



Benchmarking

• Prover ≈ 0.1s for 256× 256 input and 4× 4 kernel.

5× faster than zkCNN, 100× faster than vCNN.

• Verification ≈ 0.1ms.

• Proof size ≈ 1KB.

10× shorter than zkCNN.

Sequential composition reduces memory usage. Still room for improvement.
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VGG11 - Proof Generation Detail
Reshape Sumcheck
Convolution Sumcheck
PC - HyperPlonk

All kernels are 3× 3. Run on single-core Xeon-Gold-6154 at 3GHz.

VGG11

Conv1: 3×2242

Conv2: 64×1122

Conv3: 128×562

Conv4: 256×562

Conv5: 256×282

Conv6: 512×282

Conv7: 512×142

Conv8: 512×142
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Conclusions

• Theory framework for composition of

sumcheck-based proofs.

• Efficient sumchecks for convolution.

• Efficient arguments for data-intensive

applications such as ML and IP.

• Modular implementation in Rust.

Thank you!

ia.cr/2023/1342

david.balbas@imdea.org

Slides available @ davidbalbas. github. io
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Additional Material



VE for Multilinear Polynomials

Let t = (t1, . . . , tℓ), F a finite field, and

x(t, y) =
s∏

i=1

xi (t, y)

where each xi is a multilinear polynomial over F.

We can generalize multilinear sumcheck as a VE for the relation

fy (ry ) =
∑

t∈{0,1}ℓ
x(t, ry ).

P ,V start on fingerprint cy = fy (ry ). At the end, they obtain cx = x(rt , ry ).
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VE for Matrix Multiplication [Tha13]

Let C = A · B where A,B,C ∈ Fn×n. We can write matrix multiplication as

C̃ (x1, x2) =
∑

y∈{0,1}ℓ
Ã(x1, y) · B̃(y , x2)

Where Ã encodes A as a (unique) multilinear polynomial, Ã(i , j ) = Ai ,j

Given r1, r2 ∈ Fℓ, we apply our multilinear sumcheck VE on:

C̃ (r1, r2) =
∑

y∈{0,1}ℓ
Ã(r1, y) · B̃(y , r2).

P ,V start on fingerprint cC = C̃ (r1, r2). At the end, they obtain fingerprints

cA = Ã(r1, r3) and cB = B̃(r3, r2).

Communication and verifier tV = O(ℓ) = O(log n), prover O(n2).
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VE for Convolution

Convolution equations can be compacted as

vec(Y ) =


w0x0 + w1x1 + w3x3 + w4x4

w0x1 + w1x2 + w3x4 + w4x5

w0x3 + w1x4 + w3x6 + w4x7

w0x4 + w1x5 + w3x7 + w4x8

 =


x0 x1 x3 x4

x1 x2 x4 x5

x3 x4 x6 x7

x4 x5 x7 x8



w0

w1

w3

w4


For multiple kernels and inputs (multi-channel), as usual in e.g. neural networks,

Y = [Y1| · · · |Yd ] =
c∑

σ=1

X̂σ · [Wσ,1| · · · |Wσ,d ].

Where σ ∈ [c] represents input channels, and τ ∈ [d ] output channels.
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