
Modular Sumcheck Proofs with Applications to

Machine Learning and Image Processing

D. Balbás1,2, D. Fiore1, M. González-Vasco3, D. Robissout1, C. Soriente4

28th November 2023

1IMDEA Software Institute, Madrid, Spain
2Universidad Politécnica de Madrid, Spain
3Universidad Carlos III de Madrid, Spain
4NEC Laboratories Europe, Madrid, Spain

ACM CCS 2023, Copenhagen, Denmark

1

Proof Systems in the Wild

Towards proving larger models, we require:

• Efficient Verification

• Efficient Proof Generation: Õ(n) time, usually achieved by sumcheck-based

proofs. Low memory usage.

• Privacy for model parameters.

General-purpose proof systems (e.g. SNARKs) not great for data intensive

computations.

Special-purpose proofs (e.g. vCNN, zkCNN, zkIMG) better but lack

composability/reusability.

3

Proof Systems in the Wild

Towards proving larger models, we require:

• Efficient Verification

• Efficient Proof Generation: Õ(n) time, usually achieved by sumcheck-based

proofs. Low memory usage.

• Privacy for model parameters.

General-purpose proof systems (e.g. SNARKs) not great for data intensive

computations.

Special-purpose proofs (e.g. vCNN, zkCNN, zkIMG) better but lack

composability/reusability.

3

Proof Systems in the Wild

Towards proving larger models, we require:

• Efficient Verification

• Efficient Proof Generation: Õ(n) time, usually achieved by sumcheck-based

proofs. Low memory usage.

• Privacy for model parameters.

General-purpose proof systems (e.g. SNARKs) not great for data intensive

computations.

Special-purpose proofs (e.g. vCNN, zkCNN, zkIMG) better but lack

composability/reusability.

3

This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

This work as seen by Dall·E 3

4

This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

This work as seen by Dall·E 3

4

This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

• Efficient proofs for multi-channel

convolution.

This work as seen by Dall·E 3

4

This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

• Efficient proofs for multi-channel

convolution.

• Modular, extendable Rust implementation,

5-10x faster & shorter than special-purpose

proofs for ML and IP.
This work as seen by Dall·E 3

4

This Work

• Framework for composing sumcheck-based

proofs at an information-theoretic level.

• Better efficiency for combined

special-purpose protocols.

• Efficient proofs for multi-channel

convolution.

• Modular, extendable Rust implementation,

5-10x faster & shorter than special-purpose

proofs for ML and IP.
This work as seen by Dall·E 3

4

Our Framework

Fingerprints and Interactive Proofs

An interactive proof (IP) for the language LF = {(f , x , y) : f (x) = y} is a pair of

algorithms ⟨P ,V⟩ (f , x , y)→ b that are complete and sound.

Fingerprint

Let cx ← H(x , r) be the fingerprint of x on r .
H is (statistically) sound if for any pair x ̸= x∗,

Pr
r
[H(x , r) = H(x∗, r)] = negl(λ).

Example: for x ∈ Fn, the poly. evaluation H(x , r) = x0 + x1r + · · ·+ xn−1r
n−1 over F.

5

Fingerprints and Interactive Proofs

An interactive proof (IP) for the language LF = {(f , x , y) : f (x) = y} is a pair of

algorithms ⟨P ,V⟩ (f , x , y)→ b that are complete and sound.

Fingerprint

Let cx ← H(x , r) be the fingerprint of x on r .
H is (statistically) sound if for any pair x ̸= x∗,

Pr
r
[H(x , r) = H(x∗, r)] = negl(λ).

Example: for x ∈ Fn, the poly. evaluation H(x , r) = x0 + x1r + · · ·+ xn−1r
n−1 over F.

5

Structure of Common IPs

We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry) cy ← H(y , ry)

cx , rx
⟨PVE(x),VVE⟩(f , cy , ry) cx , rx , b

b′ ← [cx = H(x , rx)]

return b ∧ b′

x

f

y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.

6

Structure of Common IPs

We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry) cy ← H(y , ry)

cx , rx
⟨PVE(x),VVE⟩(f , cy , ry) cx , rx , b

b′ ← [cx = H(x , rx)]

return b ∧ b′

x

f

y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.

6

Structure of Common IPs

We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry) cy ← H(y , ry)

cx , rx
⟨PVE(x),VVE⟩(f , cy , ry) cx , rx , b

b′ ← [cx = H(x , rx)]

return b ∧ b′

x

f

y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.

6

Structure of Common IPs

We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry) cy ← H(y , ry)

cx , rx
⟨PVE(x),VVE⟩(f , cy , ry) cx , rx , b

b′ ← [cx = H(x , rx)]

return b ∧ b′

x

f

y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.
6

Structure of Common IPs

We can explain many efficient IPs for (f , x , y) with the following abstraction:

⟨P ,V⟩(f , x , y)
Prover Verifier

cy ← H(y , ry) cy ← H(y , ry)

c2, r2
⟨PVE(x2),VVE⟩(f3, cy , ry) c2, r2, b2

c1, r1 ⟨PVE(x1),VVE⟩(f2, c2, r2) c1, r1, b1

cx , rx ⟨PVE(x),VVE⟩(f1, c1, r1) cx , rx , b0

x

f1

x1

f2

x2

f3

y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data.
6

Our Framework

We characterize VEs and provide a formalism. VEs can be composed sequentially at

the information-theoretic level!

VEs can express many sumcheck-based proof systems:

• Matrix multiplication [Thaler13]

• GKR [GKR08, CMT12]

• Libra [XZZPS19], Virgo [ZLW+20] (and follow-ups)

• FFT-based convolution [LXZ21]

• . . .

We provide a compiler from VEs to succinct cryptographic arguments. Fingerprints can

be evaluated efficiently by V via polynomial commitments.

7

Our Framework

We characterize VEs and provide a formalism. VEs can be composed sequentially at

the information-theoretic level!

VEs can express many sumcheck-based proof systems:

• Matrix multiplication [Thaler13]

• GKR [GKR08, CMT12]

• Libra [XZZPS19], Virgo [ZLW+20] (and follow-ups)

• FFT-based convolution [LXZ21]

• . . .

We provide a compiler from VEs to succinct cryptographic arguments. Fingerprints can

be evaluated efficiently by V via polynomial commitments.

7

Efficient Proofs for Convolution

Our Proofs for Convolution

We express convolutions between input X and kernel W as multilinear sumchecks.

Source: Christopher Melen, RNCM

8

Our Proofs for Convolution

Our protocol proceeds in two steps:

1. A reshape sumcheck that rearranges X 7→ X̂ .

2. A convolution sumcheck X̂ ◦W 7→ Y .

Built upon sumchecks for matrix multiplication [Tha13] and channel batching.

Performance

For c input channels, d output channels,

Ours zkCNN [LXZ21]

Prover O
(
c ·|W | · (|Y |+ d)

)
O
(
c · d ·|X |

)
Verifier O

(
log(c ·|Y |)

)
O
(
log2(c · d ·|X |)

)
Size O

(
log(c ·|Y |)

)
O
(
log2(c · d ·|X |)

)

9

Our Proofs for Convolution

Our protocol proceeds in two steps:

1. A reshape sumcheck that rearranges X 7→ X̂ .

2. A convolution sumcheck X̂ ◦W 7→ Y .

Built upon sumchecks for matrix multiplication [Tha13] and channel batching.

Performance

For c input channels, d output channels,

Ours zkCNN [LXZ21]

Prover O
(
c ·|W | · (|Y |+ d)

)
O
(
c · d ·|X |

)
Verifier O

(
log(c ·|Y |)

)
O
(
log2(c · d ·|X |)

)
Size O

(
log(c ·|Y |)

)
O
(
log2(c · d ·|X |)

)
9

Applications and Benchmarking

Applications

We extend our framework to construct efficient proof systems for:

• Convolutional Neural Networks.

• Recurrent NNs.

• Image Processing: Native linear, reshaping, and convolutional operations

(filtering, blurring...).

Our convolution prover and a general CNN prover are implemented in Rust and available

open-source.

10

Benchmarking

• Prover ≈ 0.1s for 256× 256 input and 4× 4 kernel.

5× faster than zkCNN, 100× faster than vCNN.

• Verification ≈ 0.1ms.

• Proof size ≈ 1KB.

10× shorter than zkCNN.

Sequential composition reduces memory usage. Still room for improvement.

11

Benchmarking

• Prover ≈ 0.1s for 256× 256 input and 4× 4 kernel.

5× faster than zkCNN, 100× faster than vCNN.

• Verification ≈ 0.1ms.

• Proof size ≈ 1KB.

10× shorter than zkCNN.

Sequential composition reduces memory usage. Still room for improvement.

11

Benchmarking

• Prover ≈ 0.1s for 256× 256 input and 4× 4 kernel.

5× faster than zkCNN, 100× faster than vCNN.

• Verification ≈ 0.1ms.

• Proof size ≈ 1KB.

10× shorter than zkCNN.

Sequential composition reduces memory usage. Still room for improvement.

11

Commit

 (in
put) Conv1

 3x224
Conv2

 64x112
Conv3

 128x56
Conv4

 256x56
Conv5

 256x28
Conv6

 512x28
Conv7

 512x14
Conv8

 512x14 Open

 (in
put)

All kernels are 3x3. Activation layers not implemented.

0

200

400

600

800

1000
Ti

m
e

(m
s)

VGG11 - Proof Generation Detail
Reshape Sumcheck
Convolution Sumcheck
PC - HyperPlonk

All kernels are 3× 3. Run on single-core Xeon-Gold-6154 at 3GHz.

VGG11

Conv1: 3×2242

Conv2: 64×1122

Conv3: 128×562

Conv4: 256×562

Conv5: 256×282

Conv6: 512×282

Conv7: 512×142

Conv8: 512×142

12

Conclusions

• Theory framework for composition of

sumcheck-based proofs.

• Efficient sumchecks for convolution.

• Efficient arguments for data-intensive

applications such as ML and IP.

• Modular implementation in Rust.

Thank you!

ia.cr/2023/1342

david.balbas@imdea.org

Slides available @ davidbalbas. github. io

13

ia.cr/2023/1342
david.balbas@imdea.org
davidbalbas.github.io

Conclusions

• Theory framework for composition of

sumcheck-based proofs.

• Efficient sumchecks for convolution.

• Efficient arguments for data-intensive

applications such as ML and IP.

• Modular implementation in Rust.

Thank you!

ia.cr/2023/1342

david.balbas@imdea.org

Slides available @ davidbalbas. github. io

13

ia.cr/2023/1342
david.balbas@imdea.org
davidbalbas.github.io

Additional Material

VE for Multilinear Polynomials

Let t = (t1, . . . , tℓ), F a finite field, and

x(t, y) =
s∏

i=1

xi (t, y)

where each xi is a multilinear polynomial over F.

We can generalize multilinear sumcheck as a VE for the relation

fy (ry) =
∑

t∈{0,1}ℓ
x(t, ry).

P ,V start on fingerprint cy = fy (ry). At the end, they obtain cx = x(rt , ry).

14

VE for Matrix Multiplication [Tha13]

Let C = A · B where A,B,C ∈ Fn×n. We can write matrix multiplication as

C̃ (x1, x2) =
∑

y∈{0,1}ℓ
Ã(x1, y) · B̃(y , x2)

Where Ã encodes A as a (unique) multilinear polynomial, Ã(i , j) = Ai ,j

Given r1, r2 ∈ Fℓ, we apply our multilinear sumcheck VE on:

C̃ (r1, r2) =
∑

y∈{0,1}ℓ
Ã(r1, y) · B̃(y , r2).

P ,V start on fingerprint cC = C̃ (r1, r2). At the end, they obtain fingerprints

cA = Ã(r1, r3) and cB = B̃(r3, r2).

Communication and verifier tV = O(ℓ) = O(log n), prover O(n2).

15

VE for Convolution

Convolution equations can be compacted as

vec(Y) =

w0x0 + w1x1 + w3x3 + w4x4

w0x1 + w1x2 + w3x4 + w4x5

w0x3 + w1x4 + w3x6 + w4x7

w0x4 + w1x5 + w3x7 + w4x8

 =

x0 x1 x3 x4

x1 x2 x4 x5

x3 x4 x6 x7

x4 x5 x7 x8

w0

w1

w3

w4

For multiple kernels and inputs (multi-channel), as usual in e.g. neural networks,

Y = [Y1| · · · |Yd] =
c∑

σ=1

X̂σ · [Wσ,1| · · · |Wσ,d].

Where σ ∈ [c] represents input channels, and τ ∈ [d] output channels.

16

	Our Framework
	Efficient Proofs for Convolution
	Applications and Benchmarking
	Additional Material

