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Proof Systems in the Wild

Towards proving larger models, we require:

e Efficient Verification

e Efficient Proof Generation: O(n) time, usually achieved by sumcheck-based
proofs. Low memory usage.

e Privacy for model parameters.

General-purpose proof systems (e.g. SNARKS) not great for data intensive
computations.

Special-purpose proofs (e.g. vVCNN, zkCNN, zkIMG) better but lack
composability/reusability.
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Fingerprints and Interactive Proofs

An interactive proof (IP) for the language L = {(f,x,y) : f(x) = y} is a pair of
algorithms (P, V) (f, x,y) — b that are complete and sound.

Let cx < H(x, r) be the fingerprint of x on r.
H is (statistically) sound if for any pair x # x*,

Prr[H(x, r) = H(x", r)] = negl(X).

n—1

Example: for x € F”, the poly. evaluation H(x,r) = xo + x1r + -+ - + x,—1r"" " over F.
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Structure of Common IPs

We can explain many efficient IPs for (f, x, y) with the following abstraction:

PV)(Fxy) >
Prover Verifier fi
¢y < H(y,ry) ¢y < H(y,ry) X1
Co, 15 (Pve(), Vve) (B¢ 1) ¢ 1y by %
X2
cn (Pve(x1), Vve)(f, c2, 1) a,n, b
f3
s e (Pve(x), Vve)(f,c1,n) ¢ r b, y

Subroutines named verifiable evaluation schemes (VE) on fingerprinted data. 6
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Our Framework

We characterize VEs and provide a formalism. VEs can be composed sequentially at
the information-theoretic level!

VEs can express many sumcheck-based proof systems:

e Matrix multiplication [Thaler13]

o GKR [GKRO08, CMT12]

e Libra [XZZPS19], Virgo [ZLW+20] (and follow-ups)
e FFT-based convolution [LXZ21]

We provide a compiler from VEs to succinct cryptographic arguments. Fingerprints can
be evaluated efficiently by V via polynomial commitments.
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Our Proofs for Convolution

We express convolutions between input X and kernel W as multilinear sumchecks.

Input * Kernel > = Output
ol 11
1 4T I3
//O/ 1710
T s
12 =
L

Source: Christopher Melen, RNCM
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Our Proofs for Convolution

Our protocol proceeds in two steps:

1. A reshape sumcheck that rearranges X — X.
2. A convolution sumcheck X o W — Y.

Built upon sumchecks for matrix multiplication [Thal3] and channel batching.

Performance

For c input channels, d output channels,

| Ours | ZkCNN [LXZ21]
Prover | O(c-|W|-(Y|+d)) O(c-d-|X])
Verifier O(log(c Y1) O(log?(c-d-|X|)
Size O(log(c-|Y])) O(log?(c-d-|X|)
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Applications

We extend our framework to construct efficient proof systems for:

e Convolutional Neural Networks.

e Recurrent NNs.

e Image Processing: Native linear, reshaping, and convolutional operations
(filtering, blurring...).

Our convolution prover and a general CNN prover are implemented in Rust and available
open-source.
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Benchmarking

e Prover ~ 0.1s for 256 x 256 input and 4 x 4 kernel.
5x faster than zkCNN, 100x faster than vCNN.
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Benchmarking

e Prover ~ 0.1s for 256 x 256 input and 4 x 4 kernel.
5x faster than zkCNN, 100x faster than vCNN.

e Verification ~ 0.1ms.

e Proof size ~ 1KB.
10x shorter than zkCNN.

Sequential composition reduces memory usage. Still room for improvement.
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Conclusions

e Theory framework for composition of
sumcheck-based proofs.

e Efficient sumchecks for convolution.

e Efficient arguments for data-intensive
applications such as ML and IP.

e Modular implementation in Rust.
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Conclusions

e Theory framework for composition of

sumcheck-based proofs. Thank youl

e Efficient sumchecks for convolution.

e Efficient arguments for data-intensive

ia.cr/2023/1342
applications such as ML and IP.

e Modular implementation in Rust. david.balbas@imdea.org

Slides available @ davidbalbas. github. 10
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Additional Material




VE for Multilinear Polynomials

Let t = (t1,...,tr), F a finite field, and

X(tay) = HXi(t7y)
i=1

where each x; is a multilinear polynomial over F.

We can generalize multilinear sumcheck as a VE for the relation

fy(ry) = Z x(t, ry).

te{0,1}¢
P,V start on fingerprint ¢, = f,(r,). At the end, they obtain ¢, = x(rs, ry).

14



VE for Matrix Multiplication [Thal3]

Let C=A- B where A, B, C € F"™"_ We can write matrix multiplication as

Coxax)= Y Alxy) Bly.x)
ye{0,1}*

Where A encodes A as a (unique) multilinear polynomial, A(i,j) = A;

Given ry, ry € F¢, we apply our multilinear sumcheck VE on:

C(n,n) = Z Ar,y) - B(y,n).
ye{0,1}¢

P,V start on fingerprint cc = f(rl, ry). At the end, they obtain fingerprints
CaA — A(rl, r3) and B = é(r3, I’z).

Communication and verifier ty = O(¢) = O(log n), prover O(n?).
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VE for Convolution

Convolution equations can be compacted as

WoXp + WiX1 + W3x3 + Waxa Xo X1 X3 Xa wWo
vec( Y) _ WoX1 + Wi1Xo + W3Xs + WaXs _ X1 Xo X4 Xs Wi
Wox3 + WiXg + W3Xe + Waxy X3 X4 X X7 w3
WoXa + WiXs + W3X7 + Waxg Xa X5 X7 Xg Wy

For multiple kernels and inputs (multi-channel), as usual in e.g. neural networks,

Y=Yl Yol =D XKoo [Woal - [Wodl.
o=1

Where o € [c] represents input channels, and 7 € [d] output channels.
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